A Reinforcement Learning Approach to Control

STTR Phase I Final report

Contract No.: N00014-96-C-0321

May 31, 1997
DISTRIBUTION STRYEVENT B
Approved tor puriic releassy
v Dismibunan Jolimited .. Prepared for:

Office of Naval Research

Prepared by:

Ambherst Systems Inc. and The State University of New York at Buffalo

19970600 018

300 N Quiney St Artingron, VA $2817.5660
|

é AMHERST SYSTEMS INC.

A REINFORCEMENTR LEARNING APPROACH TO
CONTROL

FINAL REPORT

May 31, 1997

Document Control Number 62-9160004, Rev A

Prepared for: Office of Naval Research
800 North Quincy Street
Arlington, Virginia 22217-5660
Contract No.: N00014-96-C-0321
CDRL Item: 0002

Quality Assurance Manager

AMHERST SYSTEMS INC. « 30 Wilson Road ¢ Buffalo, New York 14221-7082

A Reinforcement Learning Approach to Control

Table of Contents
ABS T RACT + o iteveereacsoesossosssssssessoasesnssosasessacecasessasasssansasossssonsosnsnanns 2
SECTION 1: INTRODUCTION eerees Ceresieeranen Cieiieecinceaans veeens cerieessd
SECTION 2: REINFORCEMENT LEARNING AND GENERAL FUNCTION APPROXIMATORS 6
2.1 REINFORCEMENT LEARNINGttt ttit ettt et it ettt ittt iiia e iee e aenacaeeniaans 6
2.2 ASSOCIATIVE VERSUS NON-ASSOCIATIVE LEARNING0 ivii ittt iiaeeaasacneions 6
2.3 IMMEDIATE VERSUS DELAYED REINFORCEMENT LEARNINGottt iiiiiiiinniearanineenanenns 7
2.4 EXPLOITATION VERSUS EXPLORATION . ..t tttttit it enein e et iaeee e aanesaesnnnnaneens 8
2.5 DIRECT VERSUS INDIRECT LEARNING\ ittt it ittt iiie i iiea e e e ey 8
26 QUAYLEARNING . « et e et ettt et ettt et ettt e e e e e e e 9
2.7 FUNCTION APPROXIMATORS . « 4« e ettt ettt et et e ae vt eae it ee et et iiiiin e e nnnnnnes 9
SECTION 3: FOUNDATIONS OF REINFORCEMENT LEARNING............ ttiessesteaansan ... 11
3.1 STOCHASTIC DYNAMIC PROGRAMMING . . .t it ittt it ettt ieae e ea e it ie s 1
3.2 SYNCHRONOUS VALUE ITERATION . . o ottt tet et e i ie e eeneonenatnninnssanaasaaansaseasnns 13
3.3 POLICY IMPROVEMENT . . 4ottt ittt ae e eee e et canan e annssaenasasancasananeanens 14
3.4 ASYNCHRONOUS VALUE ITERATION AND Q-LEARNING o ettt vtiieve e einntniiannnannanns 15
B DISCUSSION . o .ttt e et et e ese et et aeae s eeetsos it naeaeeaeenannenreasaseeensnsonsans 16
SECTION 4: PARTIAL STATES AND LEARNED FEATURES....... Cereaseas cecnseae ceesens veeea 17
4.1 ACTIVE PERCEPTION AS A PARTIALLY OBSERVED MARKOV DECISION PROCESS (POMDP) 17
4.2 HISTORY AUGMENTATION OF INCOMPLETE STATE FEEDBACK FOR POMDP’S inltt. 19
4.3 A TOKEN GAZE CONTROL PROBLEM . .0 it ttii et tiensctcttaee e iiat e aaesnaaaeaeeennnns 20
4.4 SIMULATION RESULTS . & ot et ottt ettt e tie et it ettt e i ia et i na s asaneneaenssaanenensis 22
4 S DISCUSSION & vt vt v te et et e e ta e e eae e s s et o ensaesaaesoneneneessansoeassaeasusens 23
SECTION 5: SCALING UP - PARTIAL STATES AND FIXED FEATURES........ ceseens ceenesensas 25
5.1 PROBLEM DESCRIPTION o ettt tttatee eee s eaeaseaene et anesesasanineasasronas 26
L3 2o 1 103 - P 29
5.3 REFERENCE POLICIES & . ot e et etee et et eeeteenaanan s etaasetnenaraosoensanonons 29
5.4 FIXED FEATURE ALGORITHMS. . o« oottt ettt it ettt ia et aa e aaanens ot enees 31
G5 RESULTS &+« e e oot tteeeeee e e e et et et e e e e e et i taan e aa e iaaananeseranaas 35
5O DISCUSSION . o v v et e ee e et et ee st tee s et et ae s e tia et eatan s eaneeesanneaseoassanesennnrsens 42
SECTION 6: ERROR RESIDUAL VERSUS SARSA LEARNING........... Cetsesesennees Y
6.1 REINFORCEMENT LEARNING WITH FUNCTION APPROXIMATION. ovitiitineeiiieseienaenanannnn. 45
6.2 RESIDUAL ALGORITHMS AND SARSA ...\ttt itittietittanttaiennanesaaaananneosonennanns 46
6.3 THE RANDOM WALK PROBLEM. - .« « 0ttt it vttt i et tteeeeiasanaeestanasranaennnneeenns 47
6.4 THE 2-D STOCHASTIC CONTINUOUS GRID-WORLD PROBLEMot iiiiiiin e iiiiiienaeanaann 49
L3 30 £y 113 (0] O 54
SECTION 7: CONCLUSIONS. .. coeinririinnienanenens Ceeetesesesraseseenennn Ceseenes ceeneea 55
SECTION 8: REFERENCESovvvtieriirecnnrnnennnnenanens fererecasenan ceeese cereessesess 56

625-9160004 1

-

A Reinforcement Learning Approach to Control

Abstract

Active perception strategies are necessary for goal-driven allocation of available resources to im-
prove relevant information acquisition and optimize overall system performance. In addition to be-
ing both goal and data driven, these strategies must also account for the fact that information
acquisition is inherently a partially observable Markov decision problem. This report describes an
efficient, scalable reinforcement learning approach to the control of autonomous active vision
which also satisfies the more stringent requirements of foveal machine vision. Foveal vision offers
images with both wide field-of-view, useful for rapid detection, and a high acuity zone, useful for
accurate recognition, without the overhead and errors inherent in dynamic registration of data from
multiple sensors. However, space-variant data acquisition inherent with foveal retinotopologies
necessitates deployment of refined intelligent gaze control techniques. This report first lays a the-
oretical foundation for reinforcement learning. It then introduces the SARSA algorithm in conjunc-
tion with history augmentation as an effective learning control method for visual attention. A
general and flexible algorithm utilizing recurrent neural nets to learn relevant history features is
developed and demonstrated in the context of a small (token) gaze control simulation. For high-
dimensional world states, the simultaneous learning of history features and reinforcement signals
may require unacceptably long training exposures before the learned behaviors become effective.
A modification of the basic algorithm in which performance-adaptive feature learning is replaced
by fixed features is next shown to define a simplified reinforcement learning scheme which per-
forms effectively in simulated gaze control problems scaled to practical dimensions. The system is
shown to perform well in both high and low SNR ATR environments. Since commercially feasible
gaze control requires extensive generalization power, the report concludes with a description of
several numerical experiments designed to evaluate the relative efficiency of various reinforce-
ment learning algorithms and techniques for input generalization, using both prediction and control
problems. Reinforcement learning coupled with history features appears to be both a sound foun-
dation and a practical scalable base for gaze control.

625-9160004 2

e

A Reinforcement Learning Approach to Control

Section 1: Introduction

Control systems for autonomous or semi-autonomous platforms must maintain closed-loop system
integrity and performance over a wide range of operating conditions. This objective can be difficult
to achieve due to the complexity of both the plant and the performance objectives, the presence of
uncertainty, and most of all limited a priori model information. In the design of control strategies
for active perception, that is, the performance-adaptive choice of future observations in light of
current goals, needs and knowledge state, typically all of these complications must be considered.
Under such conditions, it is very difficult or even impossible to design a fixed control policy that
meets the desired performance specifications. From a control-theoretic standpoint, these difficul-
ties may result from nonlinear or time-varying behavior, poorly modeled environment and plant
dynamics, high dimensionality, multiple inputs and outputs, complex objective functions, con-
straints, and the possibility of actuator or sensor failures. Each of these effects, if present, must be
addressed if the system is to operate properly in an autonomous or semi-autonomous fashion for
extended periods of time.

The system designer may take several actions: (1) reduce the desired level of performance, (2) con-
duct additional theoretical or empirical model development in advance to reduce uncertainty, or (3)
design the control system to adjust itself on-line automatically to reduce uncertainty and/or im-
prove performance. The third action is significantly different from the first two because the result-
ing design is not fixed, and instead has inherent operational flexibility.

This Phase I effort is concerned with techniques that are intended for those difficult situations, typ-
ical of active perception and autonomous behaviour, where it is unacceptable on the basis of re-
quirements, cost, or feasibility, to reduce the desired level of closed-loop system performance. As
a consequence, the system designer can only increase the level of achievable performance by re-
ducing uncertainty, and uncertainty can only be reduced on-line, through direct interaction with the
actual system. The novel line of investigation under this Phase I effort is to create an autonomous
robot that learns to act intelligently in unstructured environments or environments with uncertain-
ty, much like humans do.

Instead of designing a complete and fixed! control system from insufficient a priori information,
control laws for poorly modeled nonlinear time-varying systems are learned through direct inter-
action between the system and its environment, and effective use of this operational experience.
As a result, learning control offers several unique features that make it attractive for building sys-
tems, such as active perception controllers, that must operate in uncertain environments.

It is important to realize that many learning tasks arising in control require methods that cannot be
precisely characterized as supervised learning. Imagine that one wishes to adjust a control law in
order to improve the performance of a plant as measured by a performance criterion that evaluates
the overall behavior of the plant; for example, one might wish to minimize a measure of the plant’s

1. The term “fixed” is used here to indicate those control systems for which the parameters and structure are determined
in an open-loop (performance independent) fashion.

625-9160004 3

A Reinforcement Learning Approach to Control

energy cost over time. Optimal control methods apply if there models of the plant and performance
measure that are sufficiently complete, accurate and tractable. However, in less structured situa-
tions it is possible to improve plant performance over time by means of on-line methods, perform-
ing what is called reinforcement learning. Whereas the performance measure for supervised
learning is defined in terms of a set of desired targets by means of a known error criterion such as
mean-squared error, reinforcement leaming is concerned with the problem of learning from re-
wards and punishments (see below for a detailed discussion). Therefore, in tasks of this kind there
exist desired control signals — those that lead to optimal plant performance — but the learning sys-
tem is not told what they are because there is no teacher available. The problem is to find these
optimal control signals, not simply to remember and generalize from them. It is this kind of learn-
ing control problems that this Phase I effort addresses.

Note that both adaptive and learning control systems are capable of automatically adjusting their
internal representations on-line, a process achieved either directly by manipulating the control law
itself, or indirectly through model identification and control law redesign. Also, both make use of
performance feedback information gained through closed-loop interactions with the plant and its
environment. However, the major difference is the range of applicability. A adaptive control sys-
tem, one with fixed structure and variable parameters, can respond effectively to a limited range of
disturbances and environmental changes (those consistent with its fixed structure). More general
perturbations cannot be adapted by parametric degrees of freedom only. Greater robustness re-
quires non-parrametric, structural variability, the hallmark of learning systems. Due to its interest
in autonomous behavior and active perception, his Phase I effort addresses learning control rather-
than adaptive control strategies.

The technique we introduce here is a combination of reinforcement learning and biologically in-
spired function approximators such as neural networks, both of which have been used successfully
in a wide variety of tasks ranging from predictions to nonlinear dynamic modeling. In particular,
reinforcement learning by itself can produce useful behaviors without higher level command (e.g.,
semantics). More specifically, we describe efficient learning control algorithms that combine Q(1)-
like learning [PengWilliams94,96,Bandera96] or State-Action-Reward-State-Action (SARSA)
[RummeryNiranjan94] techniques with sparse-coded function approximators such as the Cerebel-
lar Model Articulation Controller (CMAC) [Albus75, MillerGlanzKraft87] and Radial Basis Func-
tion neural net (RBF) [Powell87]. While reinforcement learning addresses the problem of
improving performance as evaluated by any measure whose values can be supplied to the learning
system, general approximators such as CMACs are compact representation schemes that are capa-
ble of implementing any function to any desired degree of accuracy given sufficient resources. The
key benefits of the proposed technique are its ability to improve plant performance over time in
less structured environments, its robustness and learning efficiency, and its scalability to large-
scale nonlinear problems. In addition, it is feasible to construct fast, parallel devices to implement
this technique for real-time applications. Such abilities are the prerequisite for any system to oper-
ate in real world conditions. Furthermore, such algorithms, when combined with a plant model,
may significantly reduce the overall cost of the development of gaze control strategies.

The body of the report is organized as follows: Section 2 gives a brief introduction to machine
learning in general and reinforcement learning in particular, including issues associated with rein-
forcement learning. Section 3 introduces a mathematical framework, namely dynamic program-

625-9160004 4

A Reinforcement Learning Approach to Control

ming, from which various reinforcement learning techniques are derived. Section 4 describes an
experiment designed to evaluate reinforcement learning using embedded recurrent neural networks
tasked to learn to extract relevant history features using online rewards and punishments. Motivat-
ed by scaling issues, in Section 5 reinforcement learning experiments with fixed rather than learned
history features are described. Section 6 compares two reinforcement learning schemes incorporat-
ing generalization: SARSA and residual learning. Finally, overall conclusions and references, Sec-
tions 7 and 8 respectively, complete the report.

625-9160004 5

A Reinforcement Learning Approach to Control

Section 2: Reinforcement Learning and General Function Approximators

This section provides a brief overview of reinforcement learning and general function approxima-
tion schemes. A more complete survey of the subject is presented in [Girosi95,Kaelbling96].

2.1 Reinforcement Learning

Learning is defined in this proposal as the capability of any system to change itself over time with
the intent of improving performance on tasks defined by its environment. Most learning problems
can be divided into three broad categories: Unsupervised, Supervised, and Reinforcements learning
problems. Unsupervised learning is concerned with clustering input data into categories that can
later be used to predict future data. It receives no feedback from outside and is the environment that
provides an implicit feedback. In contrast, supervised learning uses feedback provided by an ex-
ternal teacher to learn input-output mappings. In supervised learning, the system receives an input
instance, produces an output, receives the desired output from the teacher, and then uses the dis-
crepancy between its actual output and the desired output to make an adjustment to itself. Rein-
forcement learning is similar to supervised learning in that it receives an outside feedback.
However, the nature of the feedback is different. The feedback is instructive in the case of super-
vised learning and evaluative in the case of reinforcement learning. That is, for supervised learning
the system is presented with the correct output for each input instance, while for reinforcement
learning the system produces a response that is then evaluated using a scalar indicating the appro-
priateness of the response. As an example, a checker playing program that uses the outcome ofa
game to improve its performance is a reinforcement Jearning system. Knowledge about an outcome
is useful for evaluating the total system’s performance, but it says nothing about which actions were
instrumental for the ultimate win or loss. Learning in pattern classification is not reinforcement
learning since during the training, such systems receive information from a teacher about the cor-
rect classification. In general, reinforcement learning is more widely applicable than supervised
learning since any supetvised learning problem can be treated as a reinforcement learning problem.
In the context of building learning control systems whose behaviors are to be developed autono-
mously, reinforcement learning provides an attractive framework because of its similarity to the
problem faced by animals that are expected to behave intelligently in situations with great uncer-
tainty. This type of learning is also used to model behavior learning in animals and humans in ex-
perimental psychology, and is the main focus of this Phase I effort.

2.2 Associative versus Non-associative Learning

One variation in reinforcement learning is the distinction between associative and non-associative
learning. In the non-associative reinforcement learning paradigm, reinforcement is the only infor-
mation the learning system receives from its environment. That is, the system has no input infor-
mation about the environment. It does not know the state of the environment in which it is
embedded. In these tasks, the object of the system is to determine the optimal action that maximizes

625-9160004 6

A Reinforcement Learning Approach to Control

its return, or cumulative discounted sum of future rewards. Non-associative reinforcement learning
does not concern us here because our applications require taking into account the changes of envi-
ronmental states. Non-associative reinforcement learning has been mainly studied in the context of
function optimization [WilliamsPeng93] and learning automata theory [NarendraThathatchar89].

Associative reinforcement learning extends non-associative reinforcement learning in a natural
way. In such a learning paradigm, the control system receives input information that indicates the
state of its environment as well as reinforcement. The additional information tells what state of its
environment the system is in. It should be pointed out that, in general, input the system receives
about its environment is usually incomplete in that the input only reveals partial information about
the state of its environment due to the system’s limited sensory capabilities and/or limited memory
of past observations. To emphasize that observations need not be in 1-to-1 correspondence with
world states, the term sensations is often used for this output feedback.

The objective for the system in these tasks is to learn an optimal mapping from the sensations about
its environment to the actions it can execute. In the simplest case, the mapping will be a function
of the current sensation. In general, however, the system might try to represent states which sum-
marize all of the past sensations. Note that, at each state, the job of associative reinforcement learn-
ing is the same as that of non-associative reinforcement learning. Associative reinforcement
learning is of great interest to us here due to its similarity to modeling the learning and decision-
making tasks faced by animals and humans.

2.3 Immediate versus Delayed Reinforcement Learning

Another complication to reinforcement learning is the timing of reinforcement. In the simplest
tasks, the system receives, after each action, reinforcement indicating the goodness of that action.
Immediate reinforcement occurs commonly in non-associative learning tasks. In more complex
tasks, however, reinforcement is often temporally delayed, occurring only after the execution of a
sequence of actions. Delayed reinforcement learning is important because in many domains, im-
mediate reinforcement regarding the value of a decision may not always be available. For example,
in a chess game, the outcome of the game is not known until the game is over. The difficulty asso-
ciated with delayed reinforcement learning is that some judicious actions now may only allow high
rewards to be achieved later; each action in an action sequence may be essential to achieving a re-
ward, even though not all of the actions are followed by immediate rewards. Conversely, in a chess
game, a move may lead a particular player into a “doomed” situation from which it is impossible
to prevent that player from eventually losing the game - but the loss actually occurs some time later.
It would be unwise to blame the actions taken immediately before the game was lost, for these ac-
tions may have been the best that could be taken in the circumstances. The actual mistake may have
been made some time earlier. The problem of assigning credit or blame to decisions when rein-
forcement is delayed is the well known credit assignment problem [Minsky61]. This Phase I effort
focuses on methods for efficient learning in delayed reinforcement settings.

625-9160004 7

A Reinforcement Learning Approach to Control

2.4 Exploitation versus Exploration

Another important aspect of reinforcement learning is that a learning system needs two capabilities
if it is to act optimally in its environment with reasonable efficiency: exploitation and exploration.
Trying to satisfy both goals at the same time leads to a conflict. Exploitation suggests that the scope
of the search should be narrowed as experience about actions accumulates, or when exhaustive
search is not feasible, or when the system has only a finite life span, so that the system will be able
to concentrate on performing actions that are expected to be good in order to increase overall re-
wards, but exploration suggests that the scope of the search should not be narrowed irrevocably so
far as to let superior actions with little experience slip through permanently.

The tradeoff most reinforcement learning systems take to resolve the conflict is to occasionally
take random actions. This ad-hoc approach works well for most problems encountered empirically,
but has no strong theoretical foundation. A more statistically sound exploration strategy, the Inter-
val Estimation (IE) algorithm [Kaelbling90], has been proposed that uses the combination of mean
and confidence to choose appropriate actions. Other approaches have also been suggested
[Sutton90].

2.5 Direct versus Indirect Learning

There are two general approaches to learning optimal policies. One is the indirect or model-based
approach, which requires learning an environmental model in the form of state-transition and re-
ward probabilities. A search or computational technique such as dynamic programming is then ap-
plied to produce an optimal policy for the system. Most work in the adaptive control of Markov
processes described in the control engineering literature has been model-based. Learning a world
model is usually achieved by supervised learning that is relatively simple compared to the expen-
sive search for an optimal policy or a value function. It is interesting to note that a learned world
model need not be completely accurate for dynamic programming to produce a policy that accom-
plishes underlying tasks. Very often an approximate model is sufficient.

The second approach to learning how to obtain optimal policies is direct [BartoSuttonWatkins90]
or primitive learning [Watkins89]. Instead of learning an environmental model, a direct method ad-
justs the policy on the basis of its observed consequences. The system must act in its environment,
try out a variety of actions, observe their consequences, and adjust its policy to improve perfor-
mance over time. While some reinforcement learning procedures are indirect (eg. real time dynam-
ic programming Barto93) most are direct. Direct controls corresponds most closely to simple
reactive behaviors.

It is possible to combine direct methods with indirect methods in a variety of ways. Sutton’s Dyna
architecture is a classic example [Sutton90]. Also see [MooreAtkeson92,PengWilliams93]. One
typical characteristic of real world problems is their high dimensionality. It would be impractical
for a computational method, such as dynamic programming, to produce a complete solution before
committing the very first act. In such large-scale problems, a learning method with generalized ca-
pabilities that computes good solutions quickly in certain important areas of the state space may be
sufficient. Tesauro’s TD Gammon [Tesauro92] suggests that direct methods appear to be good can-

625-9160004 8

A Reinforcement Learning Approach to Control

didates for accomplishing this. This, however, does not imply that the advantages of model-based
learning should be overlooked. In fact, in the context of learning, the combinations of direct learn-
ing and model-based learning can offer significant performance improvements over either tech-
nique alone and make learning systems most promising.

2.6 Q()\) Learning

The Q(\) learning algorithm [PengWilliams94,96] is an incremental multi-step method that ex-
tends the one-step Q-learning algorithm [Watkins89] by combining it with TD(A) returns (0 < A <
1) [Sutton88] for learning from delayed rewards. A is a weighting parameter that determines to
what extent future rewards will contribute to the estimates of current action values. By allowing
corrections to be made incrementally to the predictions of observations occurring in the past, the
Q() learning method propagates information rapidly to where it is important. The Q(A) learning
algorithm works significantly better than the one-step Q-learning algorithm on a number of tasks;
its basis in the integration of one-step Q-learning and TD(A) returns makes it possible to take ad-
vantage of some of the best features of both the Q-learning and actor-critic learning paradigms, and
to be a potential bridge between them. It can also serve as a basis for developing various multiple
time-scale learning mechanisms that are essential for applications of reinforcement learning to
large-scale problems.

2.7 Function Approximators

Global function approximations assume that there is a underlying, learnable structure in the prob-
lem. This assumption is essential in order for a generalization to make sense. Some approximation
methods, such as polynomial approximations and neural networks [Barnhill77, Franke82,
Schumaker76], use a strong form of the assumption. Global models that are sufficient for capturing
the structure of the problem being modeled are usually used to fit entire training data. The difficulty
is to find an appropriate structure for a global model. One simply can not tell if a given set of pa-
rameters would be sufficient to produce an adequate model for the data, unless it is chosen with a
priori knowledge. An additional difficulty associated with connectionist networks is that because
an iterative gradient descent search procedure is used to find the appropriate set of weights, training
data must be repeatedly presented to the network. In case of on-line learning, this implies that old
experiences have to be stored and presented again since learning new experiences may degrade the
representation of older experiences. Other methods, such as decision trees and the nearest neighbor
generalization, use a weaker form of the assumption.

Sparse coarse coded function approximators, such as the CMAC and RBFs, have the same repre-
sentational capability as more conventional neural networks such as multi-layer perceptrons and
Hopfield nets. However, they are more efficient computationally and work well in many other re-
spects, such as better response to spatial variations. In addition, basis functions decrease with the
distance of the data points from the evaluation point, so that only the neighboring points affect the
estimate of the function at the evaluation point, therefore providing a “local” approximation
scheme. It should be noted however that these techniques in general do not have the highest pos-

625-9160004 9

A Reinforcement Learning Approach to Control

sible degree of locality, since the parameter that controls the locality is the same for all the basis
functions. It is possible to design even more local techniques, in which each basis has a parameter

that controls its locality.

625-9160004 10

A Reinforcement Learning Approach to Control

Section 3: Foundations of Reinforcement Learning

Dynamic programming provides solutions to problems of credit assignment in delayed reinforce-
ment learning and optimal control. The significance of dynamic programming has often been un-
der-appreciated in artificial intelligence (AI) research. The appeal and large potential of dynamic
programming in Al is that it provides an attractive basis for compiling actions into reactive policies
that can be used for real-time control, as well as for developing methods for learning such policies
when the world model is not available. It should be emphasized at the outset that although dynamic
programming requires a complete model of the world, it is the framework it provides which is rel-
evant to the synthesis and analysis of a variety of reinforcement learning algorithms. Dynamic pro-
gramming has also been used in behavioral ecology for the study of animal behavior.

The fundamental principle of dynamic programming is to determine an optimal policy by con-
structing a value function or a return function on the state space. This chapter discusses dynamic
programming in the context of Markov decision processes and introduces the major difficulties
faced by dynamic programming. The discussion is based on [Peng94].

3.1 Stochastic Dynamic Programming

One of the most powerful techniques developed for the solution of optimization problems, such as
routing and scheduling, is dynamic programming (DP) [Bellman61]. It can be formulated as fol-
lows.

A discrete-time Markov decision process} is a 4-tuple (X,A,P,R), where
1. X is a finite set of states on which the process evolves.

2. A is a finite set of actions. For each state x € X there is an associated non-empty subset
of A, whose elements are the admissible actions when the process is in state x.

3. P is a probabilistic state-transition law. It is a function: X x X x A — R, and P,,(a) is
the probability to reach state y from state x when action a is taken in that state. For any

pair (x,a), Z P (a)=1
y
4. R: X xA—> R is the expected short-term reward function on states and actions.

A policy is in general any set of rules for selecting actions. In this discussion, we consider only
policies that are non-randomized and stationary.

A stationary policy T is a function X—A mapping the state space into the action space.

We use 7(x) to denote the action the policy chooses when in state x. Broadly speaking, the objective
of the agent in the decision problem is to maximize the rewards it receives over time. The agent’s
current action influences not only the immediate reward it receives in the current state, but also the

625-9160004 11

A Reinforcement Learning Approach to Control

rewards it will be able to receive in the future.

There are several ways in which future rewards can be assessed: average rewards, total rewards,
and total discounted rewards. In this study, the agent seeks to maximize total discounted rewards.
This is the simplest case. Furthermore, the learning methods can be used for learning to maximize
the total reward or the average reward under certain conditions.

The total amount of discounted reward the agent will receive from time ¢ is:

rp 4 Yrg + yz Freo ot Y T e (eq. 1)

where r, is the reward received at time ¢ with R(x,a)=E[r; lx; ,a,], and 7 is a discount factor. The
effect of the discount factor is twofold. The discount factor ensures that the quantity of (eq. 1) is
well defined and a reward to be received in the future will be considered less valuable than one
received now. This total discounted reward is called the return.

In a Markov decision process, the total return depends not only on the state the agent is in at time
t and the policy the agent employs, but also on random factors influencing the state transitions and
the rewards. The expected return, however, depends only on the current state and the policy that
will be followed. This expected return is written as:

V”(x) = E”l:io R(x, ,7r(x,))}/'Ixo = x]

where E, indicates that the expected value is taken, given that policy T is used to choose actions,
and X, .. is the sum on 7 from O to infinity. We call V* the value function for policy m.

Objective: Find a policy that maximizes the expected return from every state.

The dynamic programming solution to the above problem is obtained by using a recursive func-
tional equation that determines the optimal policy for any state at all stages. This equation is a di-
rect consequence of Bellman’s principle of optimality [Bellman61]. It can be derived for the
deterministic case as follows. Let

Vi(x)=max 3 R(x,,a,);/’
=0

1=0,:--,00
where xp=x. Then

r=1

Vix) = max, max {R(xo,a0)+ iR(x, .a,)}"} (eq. 2)

The first term in brackets in (eq. 2) does not depend on the second maximization. Thus, (eq. 2) be-
comes

625-9160004 12

A Reinforcement Learning Approach to Gontrol

V(x)= max,, {R(xo,a0)+ max__a'_[i R(x, .4,)},r }}
t=1 o0

r=1

= max, R(xo,a0)+ ymax Z R(x,ﬂ ,a,+])7'

1=0.0,00 t=0

= max, {R(x0.a,)+W ()} (eq. 3)

where y is the actual next state when taking action aq that maximizes (eq. 3) in state x. In general,
however, the transition to a next state y occurs with probability. Thus, for a Markov decision pro-
cess, we have (see [Ross83])

V'(x) = max, {R(x,a) +7Y, P, @V’ y)} (eq. 4)

This equation is a mathematical form of Bellman’s principle of optimality. It states that the maxi-
mum expected discounted return for state x is found by taking the action that maximizes the sum
of the expected reward to be received at the present state and the expected maximum discounted
return from the state which results from applying the action. We call V* the optimal value function
and any policy whose value function is optimal an optimal policy 7*. It is the optimal value func-
tion that the agent tries to approximate. Maximizing V in the short term being equivalent to maxi-
mizing R in the long term makes dynamic programming particularly attractive. Dynamic
programming based on the optimality equation (eq. 4) solves, at least in principle, a variety of im-
portant problems. The following sections describe several well-known computational methods of
stochastic dynamic programming.

3.2 Synchronous Value Iteration

This section describes a successive approximation approach for obtaining the optimal value func-
tion--synchronous value iteration (SVI). It is a successive approximation method for solving the
optimality equation (eq. 4).

In [Ross83], it is shown that when the decision process is in state x, a policy 7 that chooses the
action that maximizes the right-hand side of the optimality equation (eq. 4)

R(x,m(x))+ yz P, (z(x)V" = max, {R(x,a) + }'Z P, (a)V*(y)},

is an optimal policy. It follows immediately that we would know the optimal policy should we
know the optimal value function. The value iteration method for obtaining the optimal value func-
tion is as follows: Let Vj(x) be any arbitrary bounded function, and define the recursive functional

625-9160004 13

A Reinforcement Learning Approach to Control

V, (x) = max, {R(x,a) + yz P (a)V,, (y)} (eq. 5)

for n>1. It can be shown [Ross83] that V,(x)—V*(x) uniformly in x as n—ee, assuming R(x,a) is
bounded for all x and a. The method is said to be synchronous because the computation of V,, de-
pends only on the values of V, ;.

Thus, to find an optimal policy, we first approximate the optimal value function V* by value iter-
ation, i.e., the repeated applications of (eq. 5), and then determine an optimal policy to be the one
that selects the action that maximizes the right-hand side of the optimality equation (eq. 4) for each
state.

It can be shown that although V,, is not necessarily closer to V* than V,,_; over all states, the maxi-
mum error between V, and V* must decrease. Mathematically, the SVl is a contraction mapping
with respect to the L., norm and has V* as its unique fixed point.

3.3 Policy Improvement

In addition to the type of approximation for constructing an optimal policy discussed above, policy
improvement or policy iteration is a method of successive approximations in policy space for pro-
ducing optimal policies [Bellman61]. It is based on the observation that one only needs to know
the value function for a given policy in order to improve that policy.

Suppose that policy T, is some proposed policy, and we wish to know if it is better than the existing
policy 7z, for which V¥ is known i.e. will T, yield higher expected returns for all states than ;2.
One way to decide if 7, is better than 7 would be to compute V" by solving the system of linear
equations defined by

V7 (x) = R(x.m(x)) + 72 P, (z(x)V () (eq. 6)

and then compare V¥ with V™ over all states. However, computing the value function is computa-
tionally costly. A more efficient way of doing this that does not require computing V™ is as fol-
lows. Consider the expected return, starting in state x, that would result from following policy =,
for one step, and then switching to 7 thereafter:

V™ (x)= R(x, T, (x)) + ;’Z P, (ﬂ'g (x))V g (y) (eq.7)

If V™%(x) < V™(x) for all states x with strict inequality for at least one state, then it can be shown
that m, is indeed an improvement over s

625-9160004 14

A Reinforcement Learning Approach to Control

The foregoing ideas provide the basis for the policy improvement method. Instead of using (eq. 7)
to find out if a proposed policy is an improvement over the current one, the policy improvement
method uses it to define a new policy that improves over the existing policy. The new policy is de-
fined to be the one that for each state x, chooses the action 7t,(x) that maximizes the right-hand side
of (eq. 7). It can be shown [Ross83] that VR(x)< V™(x) for all states, and if V™*(x)= V¥(x) for all
states, then Vp,(x)= V=V*. The policy improvement method is summarized in Figure 1.

eLet 7 be an arbitrary initial policy.
eLet i=0.

sRepeat
1. Replace i by i+1
2. Compute the value function, V™!, for 7t;.; by solving the system of linear equations de-
fined by (eq. 7).
3.Let m; be the policy that, for each state x, chooses an action, g, that maximizes

R(x,a)+ yz P_(a)V " (v)

oUntil both m; ; and 7; are optimal.

Figure 1. Policy Improvement Algorithm

An informal argument for the result goes like this: starting at state x, it is better to follow m, for
one stage and then follow 7, thereafter than to follow 7, throughout. But by the same token, it is
better to follow T, for one further stage from the state just reached. Repeating this argument shows
that it is always better to follow T, than it is to follow .

3.4 Asynchronous Value Iteration and Q-Learning

The classic method of value iteration described in section 3.2 requires that V,, is computed for all
states using the values of V,_y, and then V, .| is computed using the values of V,,, and so on. How-
ever, the value iteration method need not be carried out in this way. In fact, the values of individual
states can be updated in an arbitrary order. This way of computing V* is called asynchronous value
iteration (AV]) [Bertsekas87,BertsekasTsitsiklis89]. AVI is appealing since the convergence re-
sult requires only that the values of all states be updated often enough [Bertsekas Tsitsiklis89,
Watkins89], and thus leaves a variety of ways for the use of heuristics to control the process. In
practice, this simply implies that whatever strategy is used to choose states whose values are to be
updated, no state should suffer from starvation, i.e., no state should ever be prevented from being
chosen in the future.

It is important to realize that each individual update of a state’s value in AVI does not necessarily
make it more accurate as an estimate of the state’s true value. However, the estimated value func-
tion will converge to the true value function as the total number of updates tends to infinity. It

625-9160004 15

A Reinforcement Learning Approach to Control

should also be noted that although the order in which the values of states are updated does not alter
the convergence result of AVI, it does influence the rate of convergence.

This form of incremental DP provides a basis on which a variety of learning and planning systems
can be developed. For example, a popular TD method, Q-learning [Watkins89], can be viewed as
incremental, Monte-Carlo value iteration.

Finally, there are other versions of the value iteration method that are somewhere between the SVI
and the total A VI, such as Gauss-Seidel value iteration. In the Gauss-Seidel method, the values are
updated one state at a time sweeping through all the states in a sequential manner, with the com-
putation for each state using the up-to-date values of the other states. Like AVI, the order in which
the values of states are updated influences the computation. Gauss-Seidel value iteration converges
to the true value function under the same conditions under which SVI does.

3.5 Discussion

So far we have only discussed the situation where state or action spaces are discrete. When the state
or action spaces are continuous, dynamic programming is typically applied by first quantizing the
state or action spaces and then applying standard algorithms such as the value iteration method to
the quantized state or action spaces as if they were discrete problems.

It is important to realize that although dynamic programming is much more computationally trac-
table than explicit exhaustive search of all possible state sequences, the nature of the exact compu-
tation of dynamic programming is still exhaustive in that it requires the explicit enumeration of all
possible states. However, exhaustive computation is very impractical for problems with large num-
ber of states, which are typical in real world applications. For this reason dynamic programming
has not played a significant role in artificial intelligence research.

In terms of dimensionality of the state space, the practical limitation of dynamic programming can
be quantitatively described as follows. As the number of states increases exponentially with in-
creasing dimensionality, so does the complexity of time and space for dynamic programming to
produce an optimal solution, and usually reaches a practical limit when the dimension of the state
space is about five or six [Fu70]. Approaches that enumerate all possible actions increase similarly
in complexity with the dimension of the action space. This problem is also referred to as Bellman’s
curse of dimensionality. It was first discussed by Bellman [Bellman61] and has remained the cen-
tral issue in dynamic programming since.

In practice, this simply means that the state space may be too large to allocate memory to the entire
state space or to update all states repeatedly as are required by the value iteration method. Unless
the dimensionality problem can be adequately addressed, the practical utility of dynamic program-
ming remains limited. One of the aims in this report is to look for ways that make dynamic pro-
gramming more practical and commercially feasible.

625-9160004 16

A Reinforcement Learning Approach to Control

Section 4: Partial States and Learned Features

Foveal vision simultaneously supports a wide field-of-view (FOV), localized high acuity, and high
temporal resolution while minimizing sensor data to that which is relevant for concurrent real-time
automatic target detection, recognition (ATR), and tracking applications. However, space-variant
data acquisition necessitates the development of efficient gaze control mechanisms and rapid
schemes for referencing object saliency. This section presents a reinforcement learning method for
gaze control, together with simulation studies using an active visual sensor in a simulated gaze con-
trol problem, with application to autonomous mobile platforms.

4.1 Active Perception as a Partially Observed Markov Decision Process (POMDP)

As developed in the previous section, reinforcement learning is based on dynamic programming,
a stochastic optimization procedure guaranteed to converge to an optimal policy only when applied
to Markov processes. A stochastic process is said to be Markovian if the future evolution of the
process is conditionally independent of the past, given only its present value. In the case of active
perception, the agent (active sensor) always has limited sensing resources and cannot delineate the
complete world state in a single observation. This presents an the interface which is no longer
Markovian in nature. That is, the agent is unable to distinguish between similar world states based
solely on the current limited view of the world, and past observations may partially or completely
disambiguate these states upon which the next-action decision rests. The problem is characterized
by the fact that visual information acquired from a given fixation is in general insufficient to decide
where best to look next, since different targets may share similar features at similar locations, and
others may be out of the current field of view.

Learning problems in which the optimal action depends on more than the current observation are
known as Partially Observable Markov Decision Problems (POMDP’s). Control of active percep-
tion processes (such as gaze control) is always a POMDP since by definition there are relevant
parts of the environment which have not been adequately observed at the time the next action is
decided. A consequence of the dichotomy between observation and state is perceptual aliasing: the
incomplete characterization, or misidentification, of the state information required for decision
support. Perceptual aliasing may be reduced by the judicious use of past observations. For instance,
the limited field of view of our sensor may not include a relevant object which we have seen in an
earlier frame. By combining relevant information from past fixations with the current fixation a
more comprehensive estimate of world state is attained, and a more informed estimate of potential
risks and benefits of looking in various directions can be made. Such approaches to POMDP’s are
referred to as history-based, and are the focus of our investigations.

625-9160004 17

A Reinforcement Learning Approach to Control

(a) Hat brim fixation (b) Right eye fixation (c) Right shoulder fixation

(d) Integrated perception linking the three fixations

Figure 2(a)-(d). Multiple foveal images and integrated perception. Retinotopology: exponen-
tial lattice (radix two), four major rings (ie. rexels of five sizes), subdivision factor four (ie. each
rexel further subdivided into 4x4=16 equal size rexels).

625-9160004 18

A Reinforcement Learning Approach to Control

The images upon which gaze control stategies will be detemined is of the type illustrated in Fig-
ure 2 and described in detail in Bandera90. Such graded resolution biomimetic image acquisition
schemes minimize the data bandwidth required to support a given angular field of view and max-
imum acuity but require effective pointing (gaze control) strategies. Where to look next is a cen-
tral issue in active perception, is highly task and scenario dependent, and cannot be learned by
supervised schemes (except for the simplest of deterministic scenarios which are of limited practi-
cal value).

4.2 History Augmentation of Incomplete State Feedback for POMDP’s

History-based reinforcement learning may be implemented using look-up tables, sparse coded fuc-
tion approximators or more general neural nets. On large problems, reinforcement learning systems
must use compact approximation schemes to represent value functions. There are several approx-
imation schemes, such as CMACs, RBFs, and other neural networks, that are capable of the real-
time performance essential in many time-critical applications. The particular function approxima-
tor we use is the Elman neural network. Neural networks are general approximators and are capable
of implementing any function to any desired degree of accuracy given sufficient resources. In ad-
dition, there exist learning techniques well suited for recurrent networks that are required for many
tasks involving time, including the gaze control problem we study here.

OUTPUT
UNITS
A
‘/
HIDDEN
UNITS
INPUT CONTEXT
UNITS UNITS

Figure 3. An Elman Net

Recurrent neural networks, such as Elman networks, provide a way to construct useful history fea-
tures that are essential for solving partially observable Markov decision problems. As shown in
Figure 3, the input to an Elman network consists of two parts: input units and context units. The
context units carry feedback activations resulted from the network state at the previous time step.
That is, the context units at time step ¢ are copies of the hidden units at time step ¢-1. As a memory
structure, the context units remember an aggregate of previous network states. As a result, the be-
havior of the network depends on past as well as current inputs.

625-9160004 19

A Reinforcement Learning Approach to Control

Adjustable weights in an Elman network are those between the input units and the hidden units,
those between the context units and the hidden units, and finally those between the hidden units
and the output units. To predict utility values correctly, the recurrent network will be forced to dis-
cover historical features that permit the network to properly assign utility values to inputs display-
ing the same perception.

The recurrent network is trained using the SARSA algorithm in conjunction with back-propaga-
tion. SARSA is a based multi-step learning technique [PengWilliams94,96, RummryNarajan94].
The SARSA method has shown dramatic performance improvement over Q learning on all the
tasks that have been examined so far [PengWilliam94, Rummry Narajan94,Sutton95]. In Q-learn-
ing, error correction is made only to the Q value estimate of current state-action pair. To make cor-
rection to earlier actions, many trials will have to take place. In contrast, Q()) based techniques use
a trace mechanism, which is a memory structure, in such a way that error correction can be made
not only to the Q value estimate of current state-action pair, but also to that of earlier state-action
pairs along the trace. This in a sense amounts to efficient use of experience and parallels only to
that of EBL [Mitchell86]. More recently, Sutton [Sutton96] argues that in an environment where
learning takes place continuously, as it should, SARSA has the advantage of following the policy
it is actually estimating, whereas Q-learning estimates a policy that it does not follow. In terms of
average reward received per trial, SARSA performs significantly better than Q learning. The SAR-
SA algorithm is described in the box below, where W is the weight vector, Q, parameterized by W,
is the current approximation to action values, r is the immediate reward, v is the discounted factor,
a. is the learning rate, and A is a procedure (meta) parameter that controls credit distribution over
time.

1. Reset all eligibilities, ey=0

2. t=0

3. Select action, a,.

4. Ift>0then W, =W,) + &t (rpq + Y0, - 1)) €11

5. Calculate A, Q, with respect to. selected action a, only.
6.¢,=A, 0, +Yhey

7. Perform action a,, and receive short-term reward ;.

8. If trial has not ended, replace t by #+1 and go to step 3.

The SARSA Algorithm

4.3 A Token Gaze Control Problem

One of the main attributes of the foveal vision gaze problem we are interested in is that multiple
fixation points, and the accumulation/integration of relevant visual information acquired from each

625-9160004 20

A Reinforcement Learning Approach to Control

gaze, will be required to classify a target to within some confidence threshold. This requires the
scale-space volume defined by the discriminant target features to be greater than the scale-space
volume supported by the foveal retinotopology. Figure 3 shows the simulated recognition problem
used for the experiments reported in this section.

Each graph in Figure 4 below represents a region-of-interest where a potential target has been pre-
attentively located. Each target is represented by four features (1 or -1) placed in various locations
in the ROI. It should be noted that both classification features and their locations (highlighted box-
es) are important for determining a target. However, the precise feature position in each highlighted
box is unimportant. The foveal agent has limited sensing capabilities. The objective is for the agent
to interrogate and extract spatial patterns in a scale space fashion with a minimum amount of in-
terrogations (saccades) and computation.

1 -1 1 -1

Figure 4. Simulated Recognition Problem

Figure 5. Foveal sensor with high acuity center and reduced acuity surround

The foveal agent is equipped with a sensor with five receptive fields, shown in Figure 5, that it can
manipulate using a given set of four control actions. These actions can steer the sensor in four com-
pass directions: left, right, up, and down. The center receptive field has a higher resolution capable
of encoding the type of a feature and its precise location. The peripheral sensing device has a low
resolution and can only encode presence or absence of a feature within its receptive field. For sim-
plicity we will assume that only one feature type, -1 or 1, may be present in any highlighted box.

One can pose gaze control for the ATR task as a learning problem in many different ways. In this
report gaze control for active vision is formulated as a reinforcement learning problem. The short-

625-9160004 21

A Reinforcement Learning Approach to Control

term reward for each action is zero except the one that leads to a target recognition. An alternative
reward structure is on-line reinforcement, which accelerates convergence of the value function
[Bandera96]. The performance measure is total discounted reward received over time. Thus, the
optimal performance according to this metric is for the agent to choose the shortest gaze (saccades)
sequence required for a target recognition.

4.4 Simulation Results

This section reports the experimental results of the SARSA algorithm combined with recurrent net-
works for learning optimal gaze control in the foveal ATR problem described in Section 4.3.
Through these experiments, we expect to gain more insight into how well these learning systems
work under different conditions. The experiment consisted of a series of trials. A trial here is a se-
quence of gazing fixations. A fixation sequence begins with the active sensor pointing at a starting
Jocation within the region-of-interest. It ends when all four features are detected and classified.

After some experimentation, we settled on an Elman network with ten input units, six hidden units,
six context units, and one output unit that encodes action values for a given state-action pair. Note
that the number of hidden units could have been determined via cross-validation. The input units
are as follows:

ethree units: These are the inputs to the center sensing device. One encodes information about
the feature being detected. Two units encode the location of the feature.

efour units: Each represents a feature being detected by each of the peripheral sensors.

etwo units: These encode 4 control actions.

eone unit: The bias unit is always on.

The weights are initialized to lie between -0.1 and 0.1 and updated after each gaze. This is in direct
analogy to the typical weight update procedure in neural networks where weights are updated ac-
cording to the stochastic gradient or incremental procedure instead of the total gradient rule
[LeCun91]. That is, updates take place after each presentation of a single exemplar without aver-
aging over the whole training set. Both empirical and theoretical studies show that the stochastic
gradient rule converges significantly faster than the total gradient rule, especially when training set
contains redundant information.

There are several procedural (meta) parameters that have to be determined experimentally: the dis-
counted factor, the weighting parameter, and the learning rate. Values for these parameters were
0.9, 0.3, and 0.5 respectively. The experimental tests showed that good performance can be ob-
tained under wide range of these parameter values. In addition, during training the agent employs
an e-greedy policy to ensure sufficient exploration. An e-greedy policy is one that, at each state,
chooses greedy actions (1 - €) percent of time and random actions € percent of time. In the exper-
iments reported within this paper, € was chosen to be 0.15 throughout. Convergence to the optimal
policy in each case was attained within 15,000 trials.

An additional experiment, whose detail we omit here, was carried out in which some feature loca-
tions in highlighted boxes were perturbed. The intent here was to model noise sensor reading and

625-9160004 22

A Reinforcement Learning Approach to Control

possible distortion in a perception process under real-world conditions, and to evaluate the robust-
ness of the learned gaze control policy. The result showed that the same gaze sequences were in-
deed recommended by the control policy, illustrating the generalizing capability of the learning
system.

To view these results, the learning curve for this system was graphed in Figure 6. As a comparison,
the performance of Q-learning as a function of time was also graphed. The learning curves were
an average over 10 runs. Both algorithms used the same sets of initial random weights. Figure 5
shows clearly the superior performance of SARSA over Q-learning. Furthermore, SARSA exhibits
more stable behavior than Q-learning despite the fact that both employed the same g-greedy policy.
The result is consistent with prior empirical studies by others. In addition, to the best of the authors’
knowledge, this is the first documented empirical study that combines SARSA with recurrent neu-
ral networks.

5

=5

£

o4 +

3

84]

K]

2

23

82 7

.

g2 -

R

w1

A

o1

]

2 57

.E, O AR

z-—r\mmmq—-hmmmr-hmmm.-h
- = 0 0 M s w0 W Ww N~ N~ O o G

Number of Trials
x1000

Figure 6. Gaze control policies based on SARSA and () learning

4.5 Discussion

We have presented a history-based reinforcement learning method for the control of active vision
gazing. The associated simulation results support the judgement that reinforcement learning is a
feasible learning instrument for use in gaze control in autonomous or semi-autonomous platforms.

Reinforcement learning, in conjunction with relevant history features also learned by reward and
punishment, is capable of solving active perception tasks where perceptual aliasing is prevalent and
poses significant challenges to traditional reinforcement learning methods. Our results show that
for a simple (token) gaze control problem, the optimal strategy in a partially observable Markov
environment can be successfully learned using this approach without training periods of undue
length. In addition, comparing reinforcement learning methods, it was found that SARSA offers
significant improvements in learning speed and reliability over Q-learning in this environment.

625-9160004 23

A Reinforcement Learning Approach to Control

History-based reinforcement learning for gaze control provides large advantages over non-learning
control methods in terms of adaptability, efficiency, reliability, and apparent commercial feasibil-
ity. Having been shown feasible for a token problem with relatively few states, scalability to more
practical gaze control problems must be considered. This is the subject of the next section.

625-9160004 24

A Reinforcement Learning Approach to Control ‘

Section 5: Scaling Up - Partial States and Fixed Features

To approach optimality, a decision process must be aware of its current state at each decision
event. POMDPs are decision processes in which the current observation does not specify the pro-
cess state completely. History-based approaches to reinforcement learning in POMDPs attempt to
narrow the gap between the available and the required data by mapping the past observation
sequence into a smaller dataset of history features. These history features augment the current
observation, or features extracted from the current observation, together forming a quasi-state for
purposes of defining evaluation functions and credit assignment in reinforcement learining.

Let xe X indicate a state of the process and s(x)e S a quasi-state description of the process (concat-
enation of current observation features and history features) while in state x. If no information
from past or current observations which is relevant to current or future optimal decisions is lost in
the process of compressing the full observation sequence into the selected features, the maximum
expected discounted return (as in eqn. 4) will satisfy

Vis@x)) = V (%)

and, by the principle of optimality, the optimal policy ©* can be determined from the evaluation
function V* defined over the set of quasi-states s€ S no less than over the actual state space x€ X.

One choice of quasi-state which clearly guarantees that there is no loss of relevant information is
to use the entire past and current observation sequence as the set of features. While guaranteeing
eventual optimality, this strategy is practical only in small problems in which the size of this
dataset is acceptably limited. In the token detection problem developed in the previous section,
each past observation can be encoded in 2 bytes (3 bits for the high acuity zone, 7 to encode all the
low acuity zones, and 6 for position of the sensor). There are at most 36 past sensor positions, thus
the entire history, however long, may be stored in a data array no bigger than 72 bytes.

For larger problems some loss of relevant information is inevitable. The approach of the previous
section was to use an Elman net both to iterate towards optimal features and to use its current
quasi-state to define evalvation functions and rewards. If the compression of observation
sequence to feature set is too great, it may be anticipated that this process will be slow. Addition-
ally, if the features include a memory trace spanning many observations, the Elman net will (at
best) exhibit slow convergence toward appropriate weight values.

The fundamental problem is that learning a task-efficient unconstrained lossy state data compres-
sion mapping simultaneous with learning accurate evaluation functions based on the quasi-states
is difficult in higher dimensional spaces. Unguided by domain knowledge, the initial feature
selection is likely to be so poor that the evaluation functions learned are of little value in refining
the feature selection (Elman context unit weights). Thus the entire learning process resembles a
random walk through the high-dimensional cross-space of features and evaluation functions.

For such problems it may be possible to define useful fixed features based on prior domain
knowledge. For instance, if we are using a camera with limited field of view to search for ran-

625-9160004 25

A Reinforcement Learning Approach to Control

domly dispersed squares in a large static field of regard we should remember where it is that right
angles are observed. Other edge patterns are not relevant to this task and need not be retained. The
only other feature useful to encode is the location of each observation, so we do not revisit
mapped regions of the field of regard. Given these features characterizing the current observation
and the observational history, we have all information from present and past observations relevant
to the decision problem. While good feature selection strategies such as this are often easily
derived from domain knowledge, it might be a very long training period indeed before a general
learning algorithm deprived of domain knowledge and driven only by rewards and punishments
settles on acceptable feature definitions.

5.1 Problem Description

In this subsection a scaled-up gaze control problem is posed. The agent is equipped with an active
vision sensor that it can orient using a given repertoire of control actions. The goal is a gaze con-
trol strategy that will detect a specific pattern (the target) efficiently, i.e. with least cost. Cost may
be scored as time-to-target (number of frames of data processed on average before a target is suc-
cessfully found), travel-to-target (minimum total angular slew of the optical axis), or some combi-
nation of these measures. The environment, or set of pixels which may be searched, is modeled as
a a square two dimensional lattice of binary white noise. The target is defined as a specific 3x3
binary pattern, and the control actions limited to a few North-South or East-West movements of
the optical axis of the system. The details of this problem are specified in the following para-
graphs.

The environment that the agent is to search is a large planar lattice of square pixels. The binary
value (0 or 1) of the pixel is the result of repeated Bernoulli trials with equal probabilities P(0) =
P(1) = 0.5, all pixel values are independent. Thus the whole scene can be described as white noise
with binary independent identically distributed (BIID) pixels. The specific target that the agent
will search for is defined by the 3x3 binary template in Figure 7(a). Note that this target has a
mean value of 8/9 as opposed to the expected background of 1/2. The difference in this statistic
will be a useful cue when the target is viewed at low resolution. Note also that the targets are not
superposed on the background after the background has been generated, they are simply part of
the BIID scene. Thus the probability of a given pixel location being the center of a target is
exactly (1/2)9. A 50%50 scene is shown as Figure 7(b), with the centers of the four targets found in
this scene indicated.

Figure 7(a). Numerical and graphical representation of the target template

625-9160004 26

A Reinforcement Learning Approach to Control

Figure 7(b). A 50x50 sample environment and its target distribution

The signal to noise ratio (SNR) is next computed. For the problem as described, the signal s;; con-
sists of a random set of targets (as shown in Figure 7a) against a white (0 valued) background, and
the noise nj; is the remainder of the BIID scene x;; as in Figure 7(b):

x.

,j=s,-j+n,-j

The mean and second moment of the signal and the noise n;; may be calculated combinatorially.
Expanding the expected values for this stationary binary random field,

Es;= Es;* = 1 X P(sy=1)
En;= En,-j2 =1 X P(n;=1)

The event {sij=1 } that the signal pixel at (i,j) equals one (is black) is the event that the center pixel
of a target happens to be one of the eight nearest neighbors of the point (7,j). Consider a 5x35 array
of pixels centered at (i,j). To evaluate the probability of this event we count the number of primi-
tive outcomes associated with it. First consider the number of outcomes consistent with a target
northwest (NW) of (i,j). i.e. centered at the location (i-1,j+1). There are 225-9 = 216 guch distinct
binary 5x5 arrays. There are 216 gutcomes with a target NE, of which 210 have already been
counted (contain both NW and NE targets). Thus the number of primitive outcomes with targets
NW or NE is 216 4 (216 - 210). Continuing, there are 216 qutcomes with SE targets, of which 210
have already been counted in each of the two previous cases, so 216 _ 25210 4 24 primitive out-
comes must be added (the last term corrects for counting duplicates twice since there are 24 out-
comes with targets in all three of the NW, NW and SE corners). The SW case adds 216 3010 4
3x24 - 1 primitive outcomes. Adding, there are

4x216 - 45210 4 424 -1 = 258,111

primitive outcomes of 5x5 binary arrays with targets to the NW, NE, SE or SW of the central

625-9160004 27

A Reinforcement Learmning Approach to Control

pixel. The set of binary arrays with targets centered N, E, S, or W, can be constructed by reorder-
ing the pixel locations of the set of those centered NW, NE, SE and SW, so the total number of
primitive outcomes with a target centered at one of the eight nearest neighbors of (i,j) is double
the above, and

P(sy=1) = (2 258,111)/ 2% = 0.01538

Note that the sample environment depicted in Figure 7(b) is consistent with this value, since the
four target instances found comprise 29 black pixels out of 2500. Substituting (4) into (2) we
compute the SNR to be:

Q

2 Es%- - (Es,-j)2

SNR = = = — 4"
c? En,—zj—-(Enij)2

_ 001538 - 0.01538?
0.5-0.5>

= 0.06057

Thus the SNR is thus -12.2 dB, a relatively low value for reliable target detection.

We experimented with both uniform resolution and multi-resolution sensors. The former contains
a 3x3 array of sensor lattice sites (pixels), the latter consisted of a 3x3 fovea surrounded by a ring
of resolution cells or “rexels” each 9 pixels large as depicted in Figure 8. Each of the rexels pro-
duces a single output value, the sum (or average) of the 9 pixel values within its receptive field.

Figure 8. 2-ringed undivided exponential foveal sensor (radix 3)
with partial coverage of outer ring

Note that the presence of a target exactly registered in one of the low-resolution rexels outside the
fovea is signalled by a high rexel value, 8 out of a maximum of 9 (or 8/9 if the average rather than
total value is reported by these rexels). This value does not guarantee target present, however,
since there are 8 non-target patterns that would yield the same rexel value.

625-9160004 28

A Reinforcement Learning Approach to Control

5.2 Actions

Three different sets of control action were used to simulate the agent’s capacity to steer the visual
sensor. These actions translate the fixation point, the location in the scene imaged at the center of
the fovea, as follows:

Set A: Move N, E, S or W a distance of 1-3 pixels.
Set B: Move N, E, S or W a distance of 1-5 pixels.
Set C: Move along the 8 principal compass directions 1-3 pixels

A cost is associated with each action that the agent performs. The goal is to minimize the dis-
counted cumulative cost to first detection of an instance of the target. Specifically, the cost is :

n-1

J = Y ¥ lal+Cy
i=0

where a(i) is the action taken at the ith step, la(i)l is the distance moved by the fixation point in
pixels, Cy and C, are constants defining the relative importance of distance and time, and » is the
number of time steps to first target detection. This performance index reflects our interest in min-
imizing time to target acquisition. The first term models time to slew the optical head, and the sec-
ond models fixed dwell time to process the new fixation.

Initially, the agent’s visual sensor is aligned to a random location in the scene. The agent receives
a frame of data from the sensor, and selects an action. Upon execution of that action and receipt of
the next frame of data, either a penalty or a scalar reward value is received depending on whether
a target has been registered. This perception-action sequence continues until a target is detected or
the search is declared terminated with failure due to hitting hard time or space bounds. In any of
these cases, the trial is declared complete and its results recorded.

The gaze control policy (action selection strategy) will be modified and improved as the agent
continues interacting with the environment. The goal of the agent is to converge toward an opti-
mal policy minimizing the cost function J.

5.3 Reference Policies

Before considering reinforcement learning approaches to this problem, a pair of comparison or
reference policies not based on learning are described. The performance of these policies will
serve as a basis of comparison for the reinforcement learning results.

To establish a performance floor, random walk experiments using the action sets A, B and C

625-9160004 29

A Reinforcement Learning Approach to Control

described in Section 5.2, with a uniform resolution 3x3 sensor, were performed. For each trial, the
sensor is initially fixated at a random location in the environment and the agent randomly selects
an action from the selected action set with uniform probabilities, repeating until the target is
detected (registered with the sensor) or the limit of saccades is reached. When a target is found or
the saccade limit reached, the trial is complete. The results of 100 trails averaged for each of the
action sets is shown in Table 1.

Table 1: Unconstrained random policy performance

Ifggu,ll,::a?i Distance to target (pixels) Time to target (fixations)
Set A 1236.77 616.90

Set B 1351.82 450.28
Set C 1182.20 589.62

A second, and better, non-learning-based policy was employed in order to provide a stringent
baseline against which to evaluate the performance of the reinforcement learning strategies. The
policy is based on perfect recall of all past perceptual data. Actions are chosen to maximize the
true probability of immediate one-step target detection, with no exploration, and this policy is
therefore called the greedy-immediate policy. It assumes the agent possesses unlimited memory,
remembering all past perceptions exactly. Given a perception, for every pixel (i,j) in the entire
scene, the value of Prc(i,j), the probability that pixel is a target center given the complete past
sequence of perceptions, is evaluated. Initially all such probabilities are set at 2 since all 512
3%3 binary patterns are equally likely everywhere. Upon each new perception, after all pixel tar-
get probabilities are updated, the agent will choose the action that will saccade to the fixation
point with the maximum probability of being a target center among all pixels reachable in a single
move. If there are several such best one-step candidate fixation points, one is selected at random.

Define the set of pixels Y={(i,j)} contained in a given perception, augmented by their immediate
nearest neighbors, as the update set U = { (i+kj+): (;)eY; Ik, Il < 2}. Only pixels (i,)eU
require updating, since the new perception contains no data relevant to the remaining Py(i,j) val-
ues. For each (i,j)e U the probability Prc(i,j) that pixel location (i) is the center of a target is
updated as follows. Let Pg(i,j) be the probability that pixel (i,j) is black and Py(i,j) = 1-Pg(i,j) the
probability it is white. After a given perception, every pixel in the scene is in one of three states:
known to be black Pg(i,j)=1, known to be white Py/(i,j) = 1 or as yet unobserved Pg(i,j) = PyAi.j)
= 1/2. For each (i,j)e U compute Pyc(i,j) as the nine-way product of Py/i,j) and {Pg(i+k,j+1); K,
Il < 2}. Thus for instance if (i,j) is known to be black, or any of the eight-nearest-neighbors of (i,j)
are known to be white, the location (i,f) cannot be a target center and Py(i,/)=0. In general if m of
the nine pixels centered at (i,j) are known to be of the right color for a target (white for (i), black

for 9thc remaining pixels), none of the wrong color, and the remaining ones unknown, Prc(i,j) =
27,

625-9160004 30

A Reinforcement Learning Approach to Control

The performance of the greedy-immediate policy was explored in a second set of numerical
experiments. Action set A (move 1, 2 or 3 pixels N, E, S or W) was selected for these experi-
ments. Two different perception geometries were simulated: a small 3X3-pixel uniform resolution
sensor, and a wide FOV sensor containing five such arrays in the cross pattern shown in Figure 9.

Comparing Table 1 and Table 2, as expected the greedy-immediate policy performs much better
than the unconstrained random policy. Indeed, these two non-learning-based heuristic policies,
one a random policy totally lacking in goal-directed strategy, and the other the presumably near-
optimal, may be anticipated to bracket the performance of any interesting learning algorithm.

Figure 9. Wide FOV uniform resolution sensor geometry

Table 2: Greedy-immediate policy performance

Results of 100 Trials Distance to target (pixels) | Time to target (fixations)
3x3 uniform resolution sensor 336.16 168.94
Wide FOV sensor 338.48 167.79

5.4 Fixed Feature Algorithms Tested

If practical necessity persuades us to abandon guarantees of convergence based upon the Mark-
ovian assumption, a partial state dervied from current and history features may be used. “Percep-
tion-state” spaces, or feature-based compressed descriptions of the current observation, may be
defined in various ways. For the 3x3 uniform resolution sensor, two perception-state spaces are
proposed. The first one, designated frame space, is the limiting uncompressed case and consists of
the complete current perception. The second perception-state space for the 3x3 sensor is con-
structed by extracting and then enumerating certain features of the current frame, and the number
of these perception-states is much less than that for frame space. This space will be referred to as
feature space. It is assumed that the agent can preprocess perceptual data to extract specificed fea-
tures. A search is conducted along the 4 compass directions to determine if there is a 1/3 partial
match, 2/3 partial match or no match of the target template. These four values constitute the fea-
ture set. Since there are 3 possibilities for each of the 4 directions, the total number of states in
feature space is 34=381.

625-9160004 31

A Reinforcement Learning Approach to Control

Compass Direction : East South West North

2/3 match of target :

]

1/3 match of target :

P

-3l

-9
~2|~2
el
9|
2|~

. None of None of None of None of
No match of target : Above Above Above Above

Figure 10. Feature components for the construction of the feature space (81 possible states in
total). “?” pixelstands for don’t care condition

A modified version of the wide FOV sensor shown previously in Figure 9 was also considered. In
order to determine the value of having a lower-resolution set of rexels around the fovea, the nine
pixels in each of the four peripheral 3x3 regions are combined to a single rexel outputting a single
value corresponding to the number of black pixels within its scope. The resulting sensor geometry
is shown in Figure 11.

Figure 11. Modified version of the wide FOV sensor with a 3x3 fovea and 4 rexels along the
Sfour principal compass directions

Note that the original wide FOV sensor has 2453 52x10!3 distinct states, too many rows for a
practical Q-value look-up table. The modified sensor of Figure 11 has 10 distinct values 0-9 for
each of the four peripheral rexels and 2 values for each of the 9 foveal pixels for a total of 2x10*
= 5.12x10° states (rows), a reduction of more than seven orders of magnitude, but still too many.
A perception-state space for this sensor which is similar to the feature space described previously
is constructed as follows:

(1) The 9 foveal pixels are preprocessed to determine the degree of partial match to the target in
the N, E, S and W compass directions. The direction and magnitude (0, 1/3 match, 2/3 match) of

625-9160004 32

A Reinforcement Learning Approach to Control

the two best matches are stored in order as the foveal substate. 29 distinguishable foveal substates
are obtained in this fashion. Examples of these substates are shown in Figure 12.

Foveal View:

Fovea substate: N2 82 N2 E} E2 SI El W1 N1 O

Figure 12. Examples of some of the fovea substates. The letters stands for the direction of the
match, the number stands for the match degree, (2)/3 match, (1)/3 match and 0 Jor no match

(2) The peripheral rexel values are quantized into the following four sets depending upon their
value (number of black pixels):

7-9 --->D (very Dark)
5-6 --->d (dark)
3-4 --->1 (light)
0-2 --->L (very Light)

The quantized values of the two rexels located in the directions of the two best foveal matches
included in step 1 above are appended to the foveal substates to complete the construction of the
perception-state. An example is shown in Figure 13. Since there are 4 quanta for each of the two
corresponding rexels, the total number of distinct perception-states is 29 X 4 X 4 = 464. This is a
manageable number of rows for a Q-value look-up table.

Foveal Sensor View:

Perception State quadruplet: <S1,WI1,L,D>
Figure 13. Example of a perception-state. The number represents rexel value
This mapping is certainly lossy, with the 5.12x10° distinct states supplying more information of
use to target-seeking than the 464 perception-states. Previous experiments showed, however, that

effective actions tend to move the fixation point in the direction of best match, that is, the most
likely direction to find a near-by target. Knowledge of the rexel value in such a direction is some-

625-9160004 33

A Reinforcement Learning Approach to Control

times useful, for instance if there is a 2/3 foveal match in the N direction but the rexel in that
direction has a value of 0, 1 or 2 there cannot be a target found by moving one pixel to the north.
Most of the time the rexel value will be light or dark, but not very light or very dark, and thus
yield a weak cue only. Thus it is anticipated that the performance of this sensor will be some
improvement over the performance of the 3x3 sensor not perceiving this cue, but not a great
improvement.

To complete the partial state description, history features must be selected to augment the percep-
tion-state. In the present case, the most important history feature is the list of locations of all
nearby previous observatons, or fixation-window.The agent keeps a WXW bit sliding window cen-
tered at the current location marking those nearby locations that have been visited since they
come into the fixation-window range. This will be used to constrain fruitless revisits to regions
already adequately explored and found to be empty of targets. While other history features are rel-
evant, such as previously acquired partial match scores, these are not strong determinants of opti-
mal or near-optimal policies and were not considered further.

Feedback signals are generated as soon as the agent takes an action. A unit positive reward is
assigned only when the agent has successfully detected a target at full resolution (ie. in its fovea).
A unit negative reward or punishment associated with the cost function described in Section 5.2
will be applied if the current action fails to yield a target detection.

The discount factor 7 is used to determine to what degree rewards in the future effect the current
policy choices. In this problem, due to the unavailability of detailed history, the task of target
detection is similar to a reflexive behavior, less like planned behavior along a path. These reflex-
ive behaviors constitute quick reactive saccades in response to the most recent feature space
value. Since previous quasi-states have little correlation to future successes given the present, a
low discount factor in the range 0.1-0.2 was used.

The Q-learning algorithm implemented here selects action a from perception-state s with the best
Q-value Q(s,a). In order to drive sufficient exploration of all the state-action pairs and to avoid
trapping inside infinitely repeated inferior action loops without new policy choices, the actions in
the reported experiments are selected probablilistically based on Q-values using a Boltzmann dis-
tribution. Given a perception-state s, the corresponding action a is chosen with the probability:

eQ(s, ay/T

2 eQ(s, ay/T

ac A

P(a) =

where A is the set of all available actions (Action set A in this token problem) and T is the compu-
tational temperature parameter that controls the trade-off between exploitation and exploration.
The action with the largest Q-value is more likely to be selected, while actions other than that one
also have a chance to be selected. T is decreased over time by a cool-down function as exploration
gives way to exploitation.

625-9160004 34

A Reinforcement Learning Approach to Control

5.5 Results

The experiments are divided into two groups. The first uses no memory features, and is referred to
as standard Q-learning. The second, referred to as the fixation-window approach, employs the
fixation-window history features desribed in Section 5.4. Results from the two approaches will be
compared. Moreover, both perception-state spaces (frame space and feature space) will be used to
better understand the realtionship between learning efficiency and feature selection in the current
environment.

Performance is measured by averaging the total penalty for each trial. The miss rate is calculated
by counting the number of trials which failed to locate a valid instance of the target within 2000
frames together with all those trials whose fixation trajectories crossed the spatial limits of the
environment. Both time to target and miss rate indexes are tabulated.

Standard Q-learning will be considered first, using both frame and feature spaces. A relatively
large number of trials (60,000) were used for training to guarantee adequate exploration of the
state-action pairs. In this setup there are 512x12 Q-value table entries for the frame space runs,
and 81x12 in the feature space case. The computational temperature T tabulated on the top of each
chart) is decreased step-wise as indicated. Please note that on some graph legends the term Old
State Space is used synonymously with frame space, and New State Space with feature space. The
results from the experiments are summarized in the following figures.

Perfromance for Ordinarkl Q-Learning Perfromance for Ordinary Q—Learning
(60K Trials with Old State Space) (60K Tridls with New State Space)

T=100 'T=5.0 1=25 T=10 T1=05 T1=3.05 S00C 50 TS0 125 T=10 105 1=0.05

300C

2500

52500 H
22000 -+ k¥
B (S
’gmoc- ’g
E E
b1 =
gmoc 3
3 4
< 500 <
o N N L N A s R N N . N
100 10000 20006 30000 40000 50000 B0OGO 100 10000 20000 30000 40000 50000 60000
Nurmbar of Trios Number of Triols
() (b)

Figure 14. Performance (average cost J overl0 trials by standardard Q-learning for 60K tri-
als (a) frame space (b) feature space

625-9160004 35

A Reinforcement Learning Approach to Control

(60K Tria's with Oid State Space)

Miss Rate for Ordinary G—Learning

T=10.0 'T=5.0 T=25 T=1.0 T=0.5

'T=0.05

te Per 100 Tridls

€ 0.0 114

i
i

0 N .
100 10000 30000

50000

50000

Miss Rate for Ordinary Q-Learning
{60K Trials with New State Space)

T=2.5 =10

T=10.0 T1=5.0 T=0.5 T=0.05

il
| I;M

10000 20000 30000 40000 50000

o 2
190 60000

20000 40000
Numbar of Triok Number of Triok
(a) (b)

Figure 15. Miss rate by ordinary Q-Learning for 60K trials with (a) frame space (b) feature

space
State Utilization for Old State Space State Utilization for New State Space
(No. of Access from 60K Trial) (No. of Access from 60K Trial)
a0 10
| 9
80 ,‘h
70 -“-5 b -5 ng- i3 LM&JJ; 5, Jl\ i-u{ i 8
" LA I A L I T | I
£ e g 7
£%,, i
s g 585
-§E4° %5 s
5 30 2 3
20 2 —
10 1 ﬁ i' ,‘!‘lf
0 Lo — i b DS N A S ML
0 50 100 150 200 250 300 350 400 450 500
512 Sossible Stofes 91 Possible States

(a)

(b)

Figure 16. State utilization (number of access stof the states) for (a) Frame space. All of the
512 states are utilized) (b) Feature space. Only 34 out of the 81 states are utilized, state 81 reg-
istered the highest number of access since it represent the no-match condition for all directions

It is seen that results from experiments using the two perception-state spaces produce similar per-
formance after learning. The resulting policies (when T=0.05) demonstrate an improved perfor-
mance over unconstrained random behavior, the mean total time is reduced from around 1000
steps to around 500 steps. On the other hand, due to the dynamic environments (a new scene for
each trial) and the violation of the Markov assumption, Q-learning is somewhat slow to converge:

625-9160004

36

A Reinforcement Learning Approach to Control

the resulting policy can have a performance of 100 steps for some cases while as much as around
1500 steps for others. The same event is observed by plotting of the miss rate: though the agent is
more capable of detecting targets (after learning mean miss rate reduced from 0.07 to 0.01), the
resulting policy also saw the miss rate vary between 0 and 0.02.

It is seen in Figure 16 that the states in frame space are accessed at about the same level, this is
mainly because the binary scene pixel values are generated with equal probability (BIID). On the
contrary, only 34 out of the 81 possible states from the feature space are accessed at all, which
reflects the mutual exclusivities among the features for building up the state space and that some
feature states do no exist (e.g. Fig 17). It is also interesting to note that though 34 states is a signif-
icant reduction from 512 states in characterizing the frame space, the performance is about the
same. This implies the possibility of generalizing the input state space and reducing the required
learning period. To test this possibility, the experiments were performed again with a much
smaller number of trials (2,400 trials).

Figure 17. Examples for conflicted features: states composed from these conflicted pairings
are impossible to exist, thus are not accessed during the trials. The “?” stands for don’t care
condition

It is seen in Figures 18 and 19 that feature space performs well even with a small number of trials
while frame space failed to give a satisfactory result due to insufficient exploration of its much
larger number of state-action pairs. For comparison purpose, the experiments were performed
again with a much larger number of trials (600,000). These computationally intensive version of
the experiment resulted in a slightly improved performance with the miss rate reduced from range
of 0-0.02 to 0-0.01 (Figures 20, 21). It is also shown from Figure 21 that feature space has a
slightly poorer performance that of the frame space, reflecting the fact that the generalized feature
space failed to discriminate some of the distinct world states better interpreted in the more
detailed frame space representation of perception-states.

625-9160004 37

A Reinforcement Learning Approach to Control

Performance for Ordinary Q-Learning
(2400 Trials with Old State Space)
0T 300T=-50 T=25 T=10 T=05 T-005
3 fi
2 #
a DO -rorreerrersr s resrammssssees srrmeseneie e e e s .‘!4 S
F A I
2 1500 /»‘ /! % AN T
E TN ; L A \ j
& 1000 L S e % 1’ A
S \/ | Y, \ j i . /
£ w0 LAY VL Vi
o Tam " Tsto 1300 1600 2000 | 2400
Number of Trials

Avg. Cost(Time) Till Detection

Performance for Ordinary Q-Learning

(2400 Trials with New State Space)

3000+ -700T=50 "T=25 T=10 T=05 T-0.05
D) —
i
i
2000+ :-
(A
4 ‘; 3
i 3 A 4
15007 phefy £ i
‘I [\\ I
10004t b o NN A
i v/ i it
oy | A
: e
500 Ll
{
ottt
100 400 800 1200 1600 2000 2400
Number of Trials

(@

(b)

Figure 18. Performance using standard Q-learning with (a)frame space (b) feature space.
Lack of a decrasing trend in frame space with T indicates inadequate exploration

Miss Rate for Ordinary Q-Learning Miss Rate for Ordinary Q-Learning
{2400 Trials with Old State Space) (2400 Trials with New State Space)
01854 T=60 'T=25 'T=10 'T=05 'T=005 OB 16dT=50 'T=25 T=10 'T1=05 ’T=005 ']
016 016
g 014 f.‘ ﬁ 014
= 012 f‘-" ,/1 = 012 f‘.‘
- A I} [} g o /]
5 | H g [5 i
% 0.08 A / \~~ /1 ‘\ | ’l : l ‘\ A L’: 0.08 // 1 1/‘ 1{\ ¥
E MR RAY Y g AR NAY A !
0.06 3 i \ L = 506 3 ‘l LS)\ 7 !
3 w1 2 (IR V4 {
2 o004 Nfer £ o004 : ¥ 4
¥ \
0.02 { 0.02 7
g T oL+ttt ‘/
1007 400 800 ~ 1200 1600 2000 2400 100 400 800 1200 1600 = 2000 2400
Number of Trials Number of Trials
(a) (b)

Figure 19: Miss rate by standard Q-Learning for 2400 trials with (a) frame space (b) feature
space. Note good performance by both even in face of inadequate exploration in frame space

625-9160004

case

38

A Reinforcement Learning Approach to Control

Performance for Ordinary Q-Learning Performance for Ordinary Q—Learning
(600K Trinls with Old State Space} (600K Tridls with New State Space)
3008 177875 "T=25 =10 T05 1005 3090 17 35vs "T=25 =10 05 T=0.05
g 2500 §
3 2000 K
E £
’2?1500 TEn‘
[3 E
= =
& 1000 3
o g
< 500+ «
o ; , P I . . A
1.5K 50K 100K 250K 400K 500K 600K 15K 50K 100K 250K 400K 500K BOOK
Numbar of Trids Numbar of Triaks
(a) (b)

Figure 20. Performmance (average of total cost till target is detected from 10 trials at a interval
of 1500 trials) by ordinary Q-learning for 600K trials with (a)frame space (b) feature space

Miss Rate for Ordinary Q—Learning Miss Rate for Ordinary Q-Learning
(600K Trials with Old State Space) (600K Tridls with New State Space)
0.1 . 0.1
T=101=5 1=25 "r=10 105 1=0.05 r_mm 125 =10 =05 T=005

0.00 75} 0.09 ‘

0.08 #idih 4 0.08
goo0 Il $ h 11 T
= 0.07 i & 0.07 stfk ;u,% -
80051 §00r, ’ .‘x, ¢
+ 0.05 5 0.05

a
20.04 o004
& &
g 003 5 003
=002 002
i n
001 ok °'°; G
0 remwkoramsh . . : vt . . .
1.5k 50K 100K 250K 400K 500K BOGK 15K 50K 100K 250k 400K 500K 6OOK
Number of Triok Number of Trids
(a) (b)

Figure 21. Miss rate (number of missed trials over the number of trials during the interval of
1500 trials) by ordinary Q-Learning for 600K trials with (a) frame space (b) feature space

We next turn to the the fixation-window approach. This blocks the agent from inappropriate
choices (revisiting scene locations that have been visited before and which contain no target). The
extended version (600K) of the experiment is initially performed.

625-9160004

39

A Reinforcement Learning Approach to Control

Perform. for Q—Learning w/ Memory—Map Perform. for Q—Learning w/ Memory—Map
(600K Trials with Old State Space) (600K Trials with New State Space)
3000 147575 "T=25 T=1.0 T=05 1=0.05 5000 1710T=5 "T=2.5 T=1.0 105 1=0.05
5 2500 H 2500
22000 & 2000
F E
Eﬁoo-[i :;Hsoo it
£ < i
- JEdH w REECIAHE G RERI BRI CR L RUEIE L BN JHCELS 17 0. RN S
éloco-{ & § 100011
Y P |
> > 1
< 5001 - 3 50041 |
} “f:] 1
—ck . . P . .
§ 5% Sor 100k 250K 400K 500K 600K 1.5K 56K 100K 250K 400K 500K 600K
Numbar of Trioks Number of Triok
(2) (b)

Figure 22. Performance (average of total cost till target is detected from 10 trials at a interval
of 1500 trials) by Q-learning with fixation-window for 600K trials with (a)frame space (b) fea-

ture space
Miss Rate for Q—Learning w/ Memory—Map Miss Rate for Q~Learning w/ Memory—Map
(600K Trials with Old State Space) (800K Triols with New State Space)
0.05 r v . 0.05 T——— x v :
T=10T=5_T=25 T=1.0 T=05 T=0.05 T=10T=5 T=25 T=1.0 105 1=005

0.045 0.045
:5 0.04 ﬁ 0.04
& 0.035 &£ 0.035 i
Q g =)8
8 0037 g 003 T
« 0.025 7 « 0.025
& &
o 0.021 ° 002
o >}
% 0.015 % 0.015
g g
= o001 :) 3 001

5.005 fon 0.005

0 o N N . PR ES 0 N o LEPUEN
1.5K 50K 100K 250K 400K 500K BOOK 1.5K 50K 100K 250K 400K 500K 600K
Number of Trias Numbar of Trios
(2) (b

Figure 23. Miss rate using Q-Learning with fixation-window and (a) frame space (b) feature
space

Comparing Figures 20 and 22, the improvement in performance is not significant. However, com-
paring the miss rate indexes shown in Figures 21 and 23, the fixation-window approach yields a
greatly improved miss rate, even during the phase of random action selection (7=10). Figure 24
demonstrates the overall improvement, and the comparison of the miss rate after the learning
(T=0.05) in Figure 25 show that the agent with the combination of Q-learning and fixation-win-
dow perception-state can detect targets with a much lower miss rate (0.002) than the one with
standard Q-leaning(0.01) in exploitation mode.

625-9160004 40

A Reinforcement Learning Approach to Control

Comparison of Miss Rate — Full Range Comparison of Miss Rate — Full Range
(600K Trials with Old State Space) (600K Trials with New State Space)
0.1 T T ¥ T T 0.1 T T T T T
T=107=5 T=2.5 T=1.0 T=05 T=0.05 T=10T=5 T=25 T=1.0 =05 T=0.05
0.09 il 0.09 .
4 Ordnory O-Learning | I Ordnory G-Learning
w 0.08 .
=] 3 i
2 i)
=007
o i i
S 0.06 I e
« 0.05
(0-Lecrring w/ Memory—M
004 o x/ emoyHep
i i0--LlscAl"[rmltJVw/ Memory—Map & °>03_$. ! § :=,E€:' i =' '-\,;vf‘!\x“
gl R I M L A ST
1‘&‘*“1,6‘?’% . 390244 L T
R 1. v I
o 0.01 £
Ay
S 5K S0x 100k 250K 400K 500K BOOK 1.5K 50K 100K 250K 400K 500K 600K
Number of Trias Number of Trials
(a) (b)

Figure 24. Comparison of the miss rate of 600K trials by standard Q-learning and 600K trials
by Q-learning with fixation-window. Both (a) frame space and (b) feature space shown Q-
learning with fixation-window has a lower miss rate than standard Q-learning

Comparison of Miss Rate — Exploitation Comparison of Miss Rate — Exploitation
(The 5-800K Trials w/ Oid State Space) (The 5~800K Trials w/ New State Space)

0.016 0.016

0.014 0.014
o012 ; oo
: ! , b : i x
g oo i i 11 g oo iR C——
7 0.008 ' l‘l . [1{\ El I ! | Ordinory Q-Learring f! i\ i ~ 0008 , .A‘/\. f’;\. i.ﬁ” A‘r nary O-Leorning {h‘ ': f
2 Ahn Fad MoV A R R $ a9 | f A WYY
= 000 LA LIL A vﬂn’fH /\‘A/As ok "J < 0008 13 f‘:,‘ ;’qﬁ‘ i agl,!!‘i ;’ﬁ'\,’\z‘\‘f”‘.!ll

& ‘LAY i IR WA X ¢ i el qiegy ; bing
& VY / ‘;‘ A ‘:i‘aj 7 é s 1 ARV \t[5; Py 1\;’
% 0.004 i i 1 8 0.004 1~ frrrii Joid
io o E foont] Y

i) . =L earning. %/, Mamory=Men.
o.coz 0-Learning w/ Memory~Mop { s A ~ A 0.002 P A o /"\ l\'
LATIAS N 4 FaNaY. L VA V.Y Vo S £ LAY A YN,V A VAN YAV AN
500K 525K 550K 575K §C0K 500K 525K 550K 575K 600K
Number of Trias Numbsr of Trials
(a) (b)

Figure 25. Comparison of the miss rate during exploration mode (T=0.05) Jrom the 600K tri-
als by standard Q-Learning and Q-Learning with fixation-window. Both (a) frame space and
(b) feature space shown. Q-Learning with fixation-window has a lower miss rate

The shorter version of the experiment (60,000 trials) is performed to test for consistency, and sim-
ilar improvements from the fixation-window approach over the ordinary Q-learning are obtained
as expected. The combination of Q-learning and memory-based approach is demonstrated to be
an effective method for solving this non-Markovian POMDP control problem.

625-9160004 41

A Reinforcement Learning Approach to Control

Perform. for Q-Learning w/ Memory—Map
(60K Tridls with Oid State Space)

Perform. for Q—Learning w/ Memory—Map
(60K Tridls with New State Space)

30001750 T50 T=28 110 105 1005 3008 Ton Tmo 125 1=18 T=05 1=0.05

§2500 §3500
s 5
8]
& 2000 32000
g g
2 1500 1500
£ g
E £
% 1000 (§moc
o
5 s
> >
2 5001 LR 2 500

¥ o

oo 10000 20000 30000 40000 50000 60060 100 10000 20000 30000 40000 50000 60000
Numbar of Triok Numbar of Trioks
(a) (b)

Figure 26. Performance by Q-Learning with fixation-window and (a) frame space (b) feature
space

Miss Rate for Q—Learning w/ Memory—Map
(60K Trials with Old State Space)

0.1 T T T T
T=10.0 T=5.0 =25 =10 =05 ! 1=0.05

Numbar of Trids

Miss Rate for Q—Learning w/ Memory-Map
(60K Tridls with New State Space)

T—i00 TS0 T=25 710 T=05 T=0.05

0.1

100 10000 20000 30000 4000C 50000 50000
Number of Trids

(a)

(b

Figure 27. Miss rate by Q-Learning with fixation-window with (a) frame space (b) feature
space

5.6 Discussion

This section develops algorithms and test results obtained in applying Q-learning strategies based
on features derived from the current and past perceptions to various forms and scales of the gaze
control problem in active vision. These experiments tested target detection performance in a rea-

625-9160004 42

A Reinforcement Learning Approach to Control

sonably difficult simulation environment: small target (9 pixels), low SNR (-12.2 dB), no prior
knowledge of the number or locations of targets present, and no structure to the background
(white noise) to be exploited to eliminate regions. The state space was scaled to realistic dimen-
sions for target detection applications.

The curse of dimensionality precluded perfect cumulative perceptual memory retention needed to
permit Markov full-state updating as is required for guaranteed convergence using Q-Learning.
Only the partially-observed or perception-state version of this learning regime is feasible even for
the most constrained versions of the problem. Both past and current percept data were compressed
to make for feasible state-action lookup table data structures.

The sequence of past observations was summarized in fixation-window memory, in which the
locations of all fixations within a space-bounded sliding window moving with the fixation
sequence are remembered. This feature was used to constrain the permissible actions, through the
simple rule that having been determined not to be a target, a pixel location should not be revisited.
Two partial representations of the current perception were employed as perception-states to
reduce the number of states in the Q-function or evaluation function lookup table: frame memory
and feature memory. The former stored the previous percept just as observed, the latter summa-
rized the previous percept into a smaller number of perception-states indicating the degrees and
compass orientations of partial matches with the target.

Table 3 below summarizes our results. The unconstrained random policy, with no helpful heuris-
tics or learning at all, is to move at random, selecting the action from among all actions in the
action set (first row of Table 3). Using the current percept as perception-state for policy selection
feedback results in a policy fully taking the current percept into account, but without any memory
of the results of past observations, is listed in the second row of Table 3 as Standard Q-Learning.
As seen, this strategy cuts either distance or time costs roughly in half compared to the random-
walk policy. Adding fixation-window memory, that is, memory of the previous fixation points
within a sliding window, and using the feature space representation of the current percept leads to
the results shown in the final row of Table 3. This strategy, designated as the fixation-window
approach, is constrained in action space by the no-revisitation rule and in state space by the com-
pression of the percept into partial-match features. Standard Q-learning is both more memory-
intensive and has roughly 50% performance penalty (distance or time) relative to the fixation-
window approach.

Table 3: Experiment results with action set A and frame space

Regg;(tsﬁfallgg 1:1‘ ,;,ir?;g:gf)ter Distance to target (pixels) Time to target (fixations)
Unconstrained random 1236.77 616.90
Standard Q-learning 668.95 339.26
Fixation-window approach 412.08 206.56

625-9160004 43

A Reinforcement Learning Approach to Control

The experiments reported thus far were performed in very noisy environments in order to chal-
lenge the learning schemes. To determine the effect of SNR on these trends, additional experi-
ments were performed using higher SNR. A comparison field of view of a sample low SNR (-12.2
dB, P(black) = 1/2) and higher SNR (-5.2 dB, P(black)=1/10) environments is shown below.

.I..'- a s []

Pt#.l

(a) P(black) = 0.5 (b) P(black) =0.1

50%50 sample environement with (a) -12.2 dB SNR, (b) -5.2 dB SNR

Table 4 summarizes the results of experiments at these two SNR’s and one intermediate value
formed by setting P(black) = 0.7 leading to -7.4 dB SNR In each reinforcement learning case
600K training trials were employed and in all cases the last 300 trials were averaged. Three meth-
ods are compared: using the bare 3x3 fovea as the sensor and reinforcement learing based on fix-
ation window feature (row 1), the modified wide field of view sensor (Figure 11) with
reinforcement learing based on fixation window feature (row 2), and for a quasi-optimal non-
adaptive reference, the modified wide field of view sensor with infinite memory and the greedy-
immediate decision policy (row 3). Note that at the high SNR, the reinforcement learning algo-
rithm performed almost as well as the quasi-optimal infinite-memory greedy-immediate reference
strategy. This is encouraging, as realistic ATR or related recognition tasks usually occur at SNR’s
above 0 dB, a level not required for good performance here.

Table 4: Experiment Results with different scene SNRs

Method -12_.2 dB | -12.2dB | -7.4dB -?.4 dB -5.? dB -5.2dB
Time Distance Time Distance Time Distance
3%x3 with RL 328.6 627.8 280.3 542.6 234.8 458.3
MWFOV with RL 291.5 560.8 192.3 373.1 149.1 288.5
MWFOV with GI 167.5 338.5 NA NA 145.5 292.3

625-9160004

A Reinforcement Learning Approach to Control

Section 6: Error Residual Versus SARSA Learning

The previous sections demonstrate the feasibility and efficacy of reinforcement learning coupled
with generalization produced by learned or fixed features as a gaze control paradigm for active
perception. This section investigates several computational issues of reinforcement learning with
function approximation within the context of behavior learning and selection. The objective is to
examine the relative learning efficiency of these systems, which bears on significant importance
to time-critical applications both commercial and military.

6.1 Reinforcement Learning with Function Approximation

Most reinforcement learning methods for autonomous robots require the identification of each
world state and look-up table representations for policies and value functions in order for them to
converge to optimality. However, look-up table representations are fundamentally unsuitable for
learning in most practical problems. First, the state space of real world problems is often too large
to allocate memory to the entire state space. As the dimension of the state space increases, the stor-
age requirement becomes intractable. Second, look-up table representations typically learn the val-
ues of states one at a time, and the value of one particular state does not automatically influence
the values of similar states. However, the state space of large-scale problems prohibits a learning
system to visit all of the states, let alone update each one repeatedly to determine its correct value. '
Thus, in general lookup tables do not scale well for high dimensional problems (the curse of di-
mensionality).

There are a variety of methods that can represent value functions more efficiently and that are ca-
pable of valid generalization [Barnhill77,Franke82,Schumaker76]. One extreme case is when a
closed-form expression can be found for the value function. However, the problems in which this
can be performed are quite limited, such as when the world model is linear and the performance
criterion is quadratic. Other methods settle for trying to represent the value function approximately.
The basic principle of these approximate methods is to trade off optimality for efficiency, much
like heuristic search algorithms do in artificial intelligence research. One approach of this type is
to use a multigrid version of successive approximation (value iteration) that proceeds from coarse
to fine grids. Another approach is to assume some underlying functional form for the value func-
tion and try to compute which actual function of this form best fits the Bellman equation as applied
to actual data.

The fundamental difficulty with reinforcement learning with compact function approximation is
that convergence to optimality, as in case of lookup tables, is no longer guaranteed. When com-
bined with reinforcement learning, some such methods have been shown to be unstable in theory
[Baird95,Gordon95] and in practice [BoyanMoore95]. On the other hand, other methods have been
proven stable in theory [Sutton88,Peng94] and very effective in practice [Lin91,Tesauro92]. What
are the requirements of a method in order to obtain good performance? In the following sections,
we analyze two principal reinforcement learning algorithms namely: the residual gradient algo-
rithm and the SARSA algorithm, both of which can be shown stable in theory [TsitsiklisRoy96]

625-9160004 45

A Reinforcement Learning Approach to Control

and in practice [Sutton935].

6.2 Residual Algorithms and SARSA

For a prediction problem with a finite number of states, the optimal value function is the function
that uniquely satisfies the Bellman equation:

Vx) = <r + Y V() > (eg. 8)

where <> denotes expectation and y is a successor state for a given state x. The Bellman residual
(or error) for a value function V is defined to be the difference between the two sides of the Bell-
man equation (eq. 8). The mean squared Bellman error for a prediction problem with n states is
thus:

E = (1/n) (&, [<r + YV()> -VOP) (eq- 9)

The residual gradient algorithm [Baird95] attempts to minimize the Bellman error by performing
gradient descent on the mean squared Bellman error, E (eq. 9).

For a deterministic prediction problem, the weight change AW, after a transition from state x to
state y, will be made according to:

AW = -o(r+yV(y) - VOO)V, [YV()-V(x)D) (eq- 10)

where . is the learning rate. It is clear that for a prediction problem with a finite number of states
performing gradient descent on E guarantees convergence to a local minimum.

For a control problem with a finite number of states, the mean squared Bellman error will be:
E = (I/m) &, [<r + YV(»)> -Q((x,a)]) (eq. 11)

where V(x) = max,Q(x,a). Similar to the deterministic prediction problem, weight change in a de-
terministic control problem after a transition from state x to state y resulting from taking action a
will be made according to:

AW = 'a(r+YV(y) - Q(xla))(vy|)[YV(V)"Q(xna)]) (eQ']2)
This will give rise to a similar algorithm performing gradient descent on E (eq. 11).

It is important to note that the derivation of (eq. 10) and (eq 12) assumes that the dynamics of the
underlying system is deterministic. If the dynamics were stochastic, the residual gradient algorithm
would still converge, but not to a local minimum of the mean squared Bellman error. It will be
something else, as was noted by Werbos [Werbos90]. Despite this, it has been suggested [Baird95]
that the sheer convergence itself might still be a strong argument in favor of the algorithm as a vi-
able candidate for solving stochastic prediction or control problems. We were curious to test this
hypothesis.

625-9160004 46

A Reinforcement Learning Approach to Control

For a stochastic problem, update rules (eq. 10) and (eq. 12) in general will have to be modified ac-
cording to:

AW = -o(r+YV(y) - VOV, [YV (O)- V(D)D)
and
AW = -o(r+yV(y) - Qx,a))(V,,[YV()-O(x,a)])

where y and y’are two successor states of x, each drawn independently from the distribution defined
by the stochastic problem. This is required because an unbiased estimator of the product of two
random variables can only be obtained by multiplying two independently generated unbiased esti-
mators. To accomplish this a model of the problem must be known, either a priori or learned. This
clearly increases the computational complexity of the algorithm. In addition, acquiring a model of
the world may prove difficult, if not impossible, for many practical applications where state space
is continuous. Furthermore, given that model learning is tractable, the algorithm might still be af-
fected in undesired ways by errors in model acquisition, as shall be seen in the following sections.

6.3 The Random Walk Problem

The random walk problem, shown in Figure 28, is a simple prediction problem. There are seven
states in which state D is the starting state. At each state a transition is made either to the left or to
the right with equal probability except at states A and G, where the state transition is always to it-
self, i.e., states A and G are absorbing. The short-term reward is zero for every transition except
the one from state F to state G when the reward 1 is delivered. The objective is to predict at each
state the probability of reaching state G.

Figure 28. A random walk problem.

Previous studies [Sutton88,Sutton96] of the random walk problem have used lookup tables to rep-
resent the value function. In this experiment, the value function is represented by

V(x) = wx

where w is a free parameter or weight, and x represents state. That is, V is a linear function of its
input. States are encoded by integers from 0 to 7 corresponding to states from A to G, assuming
values of states A and G are always zero. Note that the learning agent has no direct knowledge of
what state it is in at each given moment. Instead, it only sees the encoding of the states. A trial be-

625-9160004 47

A Reinforcement Learning Approach to Control

gins at state D and ends when either state A or state G is reached. The weight change is made after
each transition.

For the random walk problem, the value of each state can be computed exactly. The ideal predic-
tions for each of these states from B to F are: 1/6, 1/3, 1/2, 2/3, and 5/6. For a given approximation
V to the ideal predictions, root mean-squared-error (RMSE) can be computed as a performance
measure. The RMSE is computed anew after every 20 backups instead of a trial, where a backup
is defined here to be a single weight update. The main reason is objectiveness. A close look at the
residual gradient algorithm reveals that the update rule (eq. 10) can be rewritten as:

AW = -o(r+yV(y) - VUV, YV +oUr+YV(¥)-Vx))V w(x))

which amounts to two backups in an update equation, as opposed one in SARSA learning. On the
other hand, since there is only one weight in the approximation system, trace computation is neg-
ligible.

0.6
Sarsa Learning
0.5 - — — — — Residual (learned model)
....... Residual (no model)

RMSE

N 1N ® v <
- - N N N OO 0 o

Number of Backups (x20)

7
40
o
46

Figure 29. Performance of random-walk by SARSA, Residual with a learned
model, and Residual without a model.

Figure 29 shows the performance of the random walk problem by SARSA, residual gradient with
a learned model, and residual gradient without a model. The procedural (meta) parameters for these
algorithms are: A =0.55, 0. = 0.002 (SARSA); o =0.016 (residual with a model); o0 =0.02 (residual
without a model). These curves are averaged over 50 runs. All the algorithms used the same initial
random seeds. Figure 29 illustrates clearly the superior performance of the SARSA algorithm over
the residual gradient algorithm. Both the SARSA and residual algorithms, with a learned model,
continued to improve as learning proceeds. On the other hand, the residual gradient algorithm with-

625-9160004 48

A Reinforcement Learning Approach to Control

out a model failed to improve even when the system was allowed to run sufficiently long. This re-
sult suggests strongly that for a stochastic problem a model is critical, be it learned or known a
priori, for the residual gradient algorithm to converge to a minimum of the mean square Bellman
error.

6.4 The Two Dimensional Stochastic Continuous Grid-World Problem

To further evaluate the relative efficiency of these algorithms, an experiment was carried out in a
two dimensional stochastic continuous grid-world domain shown in Figure 30. In the grid-world,
the state is a point. There are four actions corresponding to short steps (length 0.1) in each compass
direction. To complicate the matter, however, each action has the probability of only 2/3 to actually
move the agent in an intended direction, and the probability of 1/3 in either perpendicular direc-
tions. For example, suppose the agent takes an action having an eastward motion. The probability
that the agent actually moves one step to the east is 2/3. The agent may very well land at a state one
step north or south from its current state with the probability of 1/6.

2
> G
1
S >
0 l——»—)
0 1 2

Figure 30. A two dimensional stochastic continuous grid-world.

The start region is [0, 0.1]x[0.2, 0.3] and the goal region is [1.8, 2]x[1.0, 1.2]. There is a thin barrier
at 0.3x[0.1, 1.6] that can not be crossed by the agent. Any action that would ostensibly move the
agent into the barrier or outside the grid-world boundary has the actual effect of keeping the agent
at its current location. The short-term reward is O for each action except for those that lead to the
goal region when a reward of 10 is delivered.

625-9160004 49

A Reinforcement Learning Approach to Control

The agent initially has no knowledge of the effect of its actions on what state it will occupy next,
although it always knows its current state. Loosely stated, the objective is for the agent to discover
a policy that enables it to obtain the maximum rate of reward received over time. More specifically,
every time the agent occupies the goal region we may place it back in the starting region. In this
case, the agent’s objective is simply to discover a shortest path from the starting region to the goal
region.

All of these methods apply more generally to a much wide range of learning control tasks, in which
case the two dimensional continuous grid-world is simply a conceptual stand-in for the appropriate
abstract state space for the actual problem and the compass direction moves used here represent the
various control actions available.

The grid-world task has a continuous 2-D state space with an infinite number of states. To apply
reinforcement learning some form of a function approximator is required. We used a set of four
CMAGs, one for each action. Unlike those neural networks such as multi-layer perceptrons which
are global function approximators in that each hidden unit has a global receptive field, CMACs are
sparse coarse coded function approximators. In particular, CMACs use a hashing algorithm to im-
plement a distributed look-up table representation and a fixed amount of overlap of look-up table
weights to reduce table size and generalization.

«—— Tiling #1

™~ Tiling #2

Dimension #2

Dimension #1

Figure 31. CMACs involve multiple overlapping tilings of the state space.

A CMAC uses multiple overlapping tilings of the state space to produce a feature representation
for a final linear mapping where all the learning takes place (Figure 31). The overall effect is much
like a RBF network with fixed radial basis functions, except that it is particularly efficient compu-
tationally. The significance of CMACs can be seen in recent work [TsitsiklisRoy96]. It is shown
that for a fixed set of tilings (basis functions) from the CMACs, when coupled with TD(A) returns,

625-9160004 50

A Reinforcement Learning Approach to Control

are guaranteed to converge to optimality in the LMS sense. Although this result applies only to pre-
diction problems, it does shed light on control problems as well. It shows us that for any approxi-
mation scheme, convergence cannot be expected when updates do not follow actual sample
trajectories.

In the grid-world problem we divided the two state variables each into ten evenly spaced intervals,
thereby partitioning the state space into 100 regions or boxes. We added an eleventh row and col-
umn so that the titling could be offset by a random fraction of an interval without leaving any state
uncovered. This process was repeated five times, each with a different, randomly selected offset.
The result was a total of 11 X 11 X 5 = 605 boxes. The state at any moment was represented by the
five boxes, one per tiling, within which the state resided. One can think of the state representation
as a feature vector with 605 features, exactly 5 of which are present at any point in time. The ap-
proximate action values are linear in this feature representation. Note that with the usual choice of
binary basis functions, the CMAC approximate representation of the states results in a violation of
the Markov property: many different nearby states produce exactly the same feature presentation.

It is important to note that the tilings need not be grids. For example, to dodge the “curse of dimen-
sionality,” a possible technique is to ignore some dimensions in some tilings, i.e., to use hyperpla-
nar slices instead of boxes. A second major technique is “hashing”, or varying resolution, a
consistent random collapsing of a large set of tiles into a much smaller set. Through hashing, mem-
ory requirements are often reduced by large factors with little loss of performance. This is possible
because high resolution is needed in only a small fraction of the state space, i.e., those where value
functions are not smooth. Hashing liberates us from the curse of dimensionality in the sense that
memory requirements need not grow exponentially with dimensionality, but need merely meet the
real demands of the task.

An e-greedy policy was used to choose actions, where € was set to 0.15 in all the experiments. We
used the heuristic to ensure sufficient exploration. The initial weights were set to lie between -0.1
and 0.1. A trial begins with the agent at a state in the starting region and ends when a state in the
goal region has been reached. A starting state was uniformly, randomly generated from the starting
region.

We applied SARSA and residual gradient algorithms to this task, each with procedural parameters
selected after extensive search to give the best performance of each algorithm. Each algorithm
was run for 100 trials. All algorithms used the same sets of random starting states and the same
sets of initial random weights. The performance measure was the number of steps it takes for the
agent to reach a goal state. Because of the stochastic transition nature, these steps were averaged
over 10 traversals. That is, after each trial, the agent was placed at a starting state and then the
greedy policy was followed until a goal state was reached or some maximum number of steps
(500) was exceeded. This was done 30 times, and the average path length was recorded. This
measure was then averaged over 10 runs to produce the results shown in Figure 32.

625-9160004 51

A Reinforcement Learning Approach to Control

450
400
= 350 - \
8 .
P 300 \ i
7] . . A L
2 250 + L - WY ‘\,\,'\»\ Il Zoar L
‘7; " ‘l \I ‘I‘ h 'N‘ .| I 2 .
% 200 | ! AR AN LA
o '
8 150 1 ‘
€ — - — - Sarsa Learning
< 100 +|--->~-- Residual (Noise Level 0.0)
% Residual (Noise Level 0.15)
e Residual (Noise Level 0.3)
0 R

- 0 - © ™ O ™ © ™ © = © = © - O = O
- - A0 N O M & < 1 OV © © N~ N~ © ©

Number of Trials

Figure 32 Performance of the continuous grid-world problem by SARSA and
residual gradient algorithms.

Several results are evident from Figure 32. First, the SARSA algorithm performed significantly
better than the residual gradient algorithms. In particular, the results produced by the residual gra-
dient algorithms assumed a known model available. If the residual gradient algorithms had to learn
the model on-line, the results could have been worse. In addition, model learning would increase
the overall computational complexity of these algorithms. To see how a model might affect perfor-
mance, errors were added to the model. In general, errors may occur in two places: one in state tran-
sition estimation and the other in transition probability estimation. These errors always exist,
particularly in high dimensional or continuous state spaces where compact approximation schemes
must be used.

The performance of the residual gradient algorithms under erroneous model conditions is also
shown in Figure 32. It can be seen that the performance degrades with increasing noise levels. Fur-
thermore, the performance showed little or very slow improvement as more trials took place. This
further verifies the results presented in the previous subsection. It casts serious doubt on applying
residual gradient algorithms to solve stochastic Markov decision problems. In contrast, a model-
free method such as SARSA would stand a much better chance to succeed in these problem do-
mains.

625-9160004 52

A Reinforcement Learning Approach to Control

6
1
5-
4] Y,
L 7 "
3 LA AL LN
S g (AN)
'ggg;;','fi.*'o’n’:i/’!lllﬂ#:"‘ S L 821
2\ AR Fsim
(<} (LD
iy
(R 70747, 2o o TN s e S13
e ~ S9
0

S5
(o)}
2 o
a g Q
Fioure 33 The value function computed by SARSA after 100 trials.
g 14 y
s
71N
6 5'/ i
\Z7
5 h Ve o :; '\ 77 2
””l",’, p=>7 7 “ ’
22T TP LALIL A
4 gzl || [[
. ll"‘, ’f ”f:"l"'"/--_ ’ l. P
[o252 LI [TN
| R AT
1 : SIS A2ZZ7HK T
AT T R | s
"’0//‘5""".',"'51",’,"5'
2 RIS S17
LS
1] S13

()]
(2]

- & Vo)
N

28

Figure 34 The value function computed by the Residual Gradient algorithm

using a perfect model after 100 trials.

625-9160004 53

A Reinforcement Learning Approach to Control

Figure 33 plots the value function computed by SARSA after 100 trials. Similarly, Figure 34 plots
the value function computed by the residual gradient algorithm using perfect model information.
Clearly, SARSA created a better surface than the residual gradient method. The large valley area
in the middle of the state space created by the residual gradient algorithm can cause the agent to
move in a wrong direction, which certainly contributes to the relatively poor performance. In ad-
dition, the same value function shows flatness in the vicinity of the starting region, which is in
sharp contrast with the value function computed by SARSA. Therefore, a “residual” agent can take
a step in either direction instead of the preferred southward direction.

Much more empirical work is needed with these algorithms before a definitive conclusion can be
drawn about their relative efficiency, particularly when function approximators are used. However,
these experiments do provide strong evidence for two points: (1) the value function produced by
SARSA is a better approximation to the optimal value function than that generated by the residual
gradient algorithm, other things being equal, and (2) the residual gradient algorithms require a
model in solving stochastic Markov decision problems, which causes these methods to be suscep-
tible to unavoidable errors in model estimation.

6.5 Discussions

We have presented analytical and empirical studies evaluating the relative efficiency of SARSA
and residual gradient algorithms using both prediction and stochastic control tasks. These studies
provide valuable information for selecting reinforcement learning methods for machine vision
gaze control in commercial settings.

These results showed consistent, significant, and sometimes large advantages of SARSA over re-
sidual gradient algorithms. They showed that to be useful in a stochastic Markov decision problem,
the residual gradient algorithm must use model information, be it learned or known a priori. Fur-
thermore, performance degrades with decreasing model accuracy. This bears on the question of the
necessity of model information as control problems become non-deterministic. The main theoret-
jcal advantage of the residual gradient algorithm is that it converges in many cases to a minimum
mean squared Bellman error solution, particularly when function approximators are used. SARSA,
on the other hand, does not share this theoretical advantage. In practice, however, this may not be
of great significance. All of our experimental results suggest far better performance is obtained
with SARSA than with residual gradient algorithms.

625-9160004 54

A Reinforcement Learning Approach to Control

Section 7: Conclusions

Active vision has two basic components which are locked in a tight feedback loop: image sequence
analysis and gaze control. Gaze control for active machine vision must support system integrity
and performance over a wide range of operating conditions. This objective can be difficult to
achieve due to several circumstances including the complexity of the performance objectives, the
presence of dynamic uncertainty, and limited a priori model information. Under such conditions,
it is very difficult or even impossible to design a control policy with fixed properties that meets the
desired performance specifications. This report has addressed the problem of developing reinforce-
ment learning algorithms with computational feasibility as well as effective generalizing capabili-
ties for gaze control in active machine vision systems, and in the more demanding foveal systems.

The report began by giving a brief introduction to the field of reinforcement learning, a branch of
machine learning, and various issues associated with reinforcement learning. It then described a
particular theoretical framework within which to explore efficient computation and leaming gen-
eralization. The description of dynamic programming provides a theoretical basis that serves both
to explain the operation of a class of computational procedures, known as TD methods, and to re-
late them to existing theories of prediction, control, and learning. The report next presented a rein-
forcement learning method, namely SARSA, in conjunction with recurrent neural networks for
gaze control. The role of the recurrent Elman neural networks is to provide a memory mechanism
for learning salient history features. The efficacy of the method was empirically validated in a to-
ken active perception problem.

While an important demonstration of concept, reinforcement learning of history features simulta-
neous with learning appropriate valuation functions does not scale readily to realistic problems.
Storage can be a problem, as the dimension of the set of potential learned features increases rapidly
with problem scale and the size of the recurrent nets becomes excessive. For realistically scaled
problems convergence time is also a potential problem, as the heirarchcal search for good features
and good valuation functions given the current, often inadequate, features cannot be expected to
converge rapidly in the context of unguided trial and error training. For scaled problems the attrac-
tive but computationally burdensome optimal-seeking behavior of learned features may be re-
placed by heuristic fixed features. Often they are easily identified, and many orders of magnitude
in storage and convergence time is saved. This approach was shown in a scaled problem to yield
practical results, in which the learned behavior was shown to be quasi-optimal using small look-
up tables and less than 107 trials.

Finally, SARSA and Residual Learning were compared in the context of neural generalization, and
SARSA shown to be uniformly superior for the tests run. This is significant as residual learning
has certain attractive asymptotic-optimality properties not shared by SARSA. As is often the case
in search theory, asymptotic results are not necessary useful guides in finite searches.

In summary, we conclude that reinforcement learning coupled with fixed or learned features is a
promisingly sound and practical paradigm for gaze control. Reward and punishment guidance,
generalization, and full use of domain knowledge are all central to achieve practical, useful results
for realistic problems.

625-9160004 55

A Reinforcement Learning Approach to Control

Section 8: References

Albus, J.S., A new approach to manipulator control: The cerebellar model articulation controller
(CMAC). Journal of Dynamic Systems, Measurement, and Control, September, 220-227, 1975.

Asada, M., Noda, S., Tacaratsumida, S., and Hosoda, K., (1995). Vision-Based Reinforcement
Learning for Purposive Behavior Acquisition. Proc. of IEEE Int. Conf. on Robotics and Automa-
tion.

Asada, M., Noda, S., Taearatsumida, S., and Hosoda, K., (1996a). Behavior Acquisition via
Vision-Based Robot Learning. Robotics Research, The Seventh International Symosium.
Springer. pp.1314-1319.

Asada, M., Noda, S., Taearatsumida, S., and Hosoda, K., (1996b). Target Reaching Behavior
Learning with Occlusion Detection and Avoidance for A Stereo Vision-Based Mobile Robot.
Proc. of ROBOLEARNY6: An International Workshop on Learning for Autonomous Robots

Baird, L., Residual algorithms: Reinforcement learning with function approximation. Proceed-
ings of the Twelfth International Conference on Machine Learning, 1995.

Bandera, C., (1990). Foveal Machine Vision Systems. Ph.D. dissertation, Department of Electrical
and Computer Engineering, SUNY at Buffalo.

Bandera, C., Scott, P., (1989). Foveal Machine Vision System. Proceedings of IEEE International
Conference on Systems, Man, and Cybernetics, Cambridge, MA, November.

Bandera, C., and Scott, P.,(1996) Fusion of sensors that interact dynamically for explorartory
development of robust, fast object detection and recognition - AFOSR STTR Phase I Progress
Review. Amherst Systems and University at Buffalo.

Bandera, C., Residual Q-learning applied to visual attention, co-written with Dr. F.Vico, J. Bravo,
Lt. M. Harmon, Capt. L. Baird. Proceedings of the 13th International Conference on Machine
Learning, Bari, Italy, July 3, 1996.

Barnhill, R.E., Representation and approximation of surfaces. Mathematical Software 111, 69-120,
1977.

Barto, A.G., Sutton, R.S., Watkins, C.J.C.H., Learning and sequential decision making. (COINS
Technical Report 89-95). Department of Computer and Information Science, University of Mas-
sachusetts, Amherst, MA 1989.

Barto, A.G, Bradke, S.J. and Singh, S.P., Learning to Act Using Real-Time Dynamic Program-
ming, Artificial Intellignece 72, 81-138, 1995.

Bellman, R., (1957). Dynamic Programming. Princeton University Press, Princeton, NJ.

625-9160004 56

A Reinforcement Learning Approach to Control

Bellman, R.E., Adaptive Control Processes. Princeton University Press, 1961.

Bertsekas, D.P., A counter example to temporal-difference learning. Neural Computation, Vol. 7,
270-279, 1994,

Bertsekas, D.P., Dynamic Programming: Deterministic and Stochastic Models. Prentice Hall, Inc.
1987.

Bertsekas, D.P., Tsitsiklis, J.N., Parallel and Distributed Computation: Numerical Methods.
Prentice Hall, Inc. 1989.

Boyan, J., Moore, A., Generalization in reinforcement learning: Safely approximating the value
function. NIPS-7, 1995.

Boyan, J., Moore, A., Generalization in reinforcement learning: Safely approximating the value
function. NIPS-7, 1995.

Boyan, J., Moore, A.W., Learning evaluation functions for large acyclic domains. Proceedings of
the Thirteen International Conference on Machine Learning, 1996.

Carpenter, G.A., and Grossberg, S., (1987a) A massively parallel architecture for a self-organiz-
ing neural pattern recognition machine. Comput. Vision, Graphics Image Process., Vol 37, pp54-
115

Carpenter, G.A., and Grossberg, S., (1987b) ART2 : self-organization of stable category recogni-
tion codes for analog input patterns. Applied Optics, Vol 26, pp 4919-4930.

Fagg, A.h., Lotspeich, D., and Bekey, G.A., (1994). A Reinforcement-Learning Approach to
Reactive Control Policy Design for Autonomous Robots. 1994 IEEE Conference on Robotics and
Automation.

Franke, R., Scattered data inierpolation: Tests of some methods. Mathematics of Computation
38(157), 1982.

Fu, K.S., Learning Control Systems — Review and Outlook. IEEE Transactions on Automatic
Control, 210-221, April 1970.

Girosi, F., Jones, M., Poggio, T., Regularization theory and neural networks architectures. Neural
Computation 7,219-269, 1995.

Gordon, G., Stable function approximation in dynamic programming. Proceedings of the Twelfth
International Conference on Machine Learning, 1995.

Kaelbling, L.P., Learning in embedded systems. Ph.D. Dissertation, Dept. of Computer Science,
Stanford University, CA 1990.

625-9160004 57

A Reinforcement Learning Approach to Control

Kaelbling, L.O., Littman, M.L., and Moore, A.W.,(1996). Reinforcement Learning : A Survey.
Journal of Artificial Intteligence Research 4. 237-285.

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., and Jackel, L.D.,
Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation (1) 541-
551, 1989.

Lin, L.J., Self-improving reactive agents based on reinforcement learning, planning, and teach-
ing. Machine Learning, 8(3/4), 293-321, 1992.

Lin L-J., (1991) Programming robots using reinfocement learning and teaching. Proceedings of
AAAI-9] pp. 781-786.

Miller, W. T. III, Glanz, F. H., Kraft, L. G. IlI, Application of a general learning algorithm to the
control of robotic manipulators. The International Journal of Robotics Research 6(2), 84-98,
1987.

Minsky, M.L., Steps toward artificial intelligence. Proceedings IRE 49, 8-30, 1961.

Mitchell, T., Keller, R., Kedar-Cabelli, S., Explanation-based learning: A unifying view. Machine
Learning, 1, 47-80, 1986.

Moore, A.W., (1994). The parti-game algorithm for variable resolution reinforcement learning in
multidimensional state-apces. In Cowan, J.D., Tesauro, G., & Alspector, J. (eds), Advances in

Neural Information processing Systems 6, pp.711-718 San Mateo, CA. Morgan Kaufman.

Moore, A.W., Atkeson, C.G., Memory-based reinforcement learning: Converging with less data
and less real time. Proceedings of NIPS*92, 1992.

Narendra, K.S., Thathatchar, M.A.L., Learning Automata: An Introduction. Englewood Cliffs,
NJ: Prentice Hall 1989.

Pandya, A.D., Macy, Robert B., (1996) Pattern Recognition with Neural Networks in C++, IEEE
Press.

Peng, J., Efficient dynamic programming based learning for control. Ph.D. Dissertation, North-
eastern University, Boston, MA 1994.

Peng, J., Williams, R.J., Incremental multi-step Q learning. Machine Learning,22,283-290, 1996.

Peng, J., Williams, R.J., Incremental multi-step Q learning. Proceedings of the Eleventh Interna-
tional Conference on Machine Learning, 226-232, 1994.

Peng, J., Williams, R.J., Efficient learning and planning within the Dyna framework. Adaptive
Behavior Vol. I No. 4, 1993.

625-9160004 58

A Reinforcement Learning Approach to Control

Powell, M.J.D., Radial basis functions for multivariable interpolation: A review. In Algorithms
for Approximation (Mason, C.\& Cox, M.G., Eds) Clarrendon, Oxford 143-167, 1987.

Ross, S., Introduction to Stochastic Dynamic Programming. Academic Press, New York, 1983.

Schumaker, L.L., Fitting surfaces to scattered data. Approximation Theory II. Academic Press
203-268, 1976.

Rummery, G., Niranjan, M., On-line Q learning using connectionist systems. Technical Report
CUED/F-INFENG/TR 166, Cambridge University, 1994.

Schwartz, A., A reinforcement learning method for maximizing undiscounted rewards. In Pro-
ceedings of the Tenth International Conference on machine Learning, 298-305, 1993.

Shibata, K., Nishimo, T., and Okabe, Y.,(1995). Active Perception Based on Reinforcement
Learning. Proccedings of WCNN’95. Washington D.C., vol.2, pp.170-173.

Sutton, R.S., Personal communication, NSF Reinforcement Learning Workshop, Harpers Ferry,
WV, April 12-14, 1996.

Sutton, R.S., Generalization in reinforcement learning: successful examples using sparse coarse
coding. Proceedings of NIPS, 1995.

Sutton, R.S., Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming. Proceedings of the Seventh International Conference on Machine Learn-

ing,216-224, 1990.

Sutton, R.S., Learning to predict by the methods of temporal differences. Machine Learning, 9-
44, 1988.

Tstsiklis, .N., Van Roy, B., An analysis of temporal-difference learning with function approxi-
mation. LIDS-P-2322, Laboratory for Information and Decision Systems, MIT, March 1996.

Tesauro, G., Practical issues in temporal difference learning. In: J.E.Moody, S.J.Hanson,
R.P.Lippmann (Eds.), Advances in Neural Information Processing Systems 4}, 259-266, 1992.

Watkins, C.J.C.H., Learning from delayed rewards. Ph.D. Dissertation, King’s College, UK 1989.
Watkins, C.J.C.H., & Dayan, P.,(1992) Q-Learning. Machine Learning, 8(3), 279-292.

Werbos, P.J., Consistency of HDP applied to a simple reinforcement learning problem. Neural
Networks (3) 179-189, 1990.

Whitehead, S.D., and Ballard, D.H., (1991) Learning to perceive and act by trial and error.
Machine Learning 7, 45-83.

625-9160004 59

A Reinforcement Learning Approach to Control

Williams, R. J., Peng, J., Function optimization using connectionist reinforcement learning algo-
rithms. Connection Science 3(3), 1991.

Zurada, J.M., (1992) Introduction to Artificial Neural Systems. West Publishing Company.

625-9160004 60

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this coflection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA

22002-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
31, May1997 Final Technical Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A Reinforcement Learning Approach to Control Contract No.:

N00014-96-C-0321

6. AUTHOR(S)

Cesar Bandera, Peter Scott, Jing Peng

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Amherst Systems Inc.
30 Wilson Road 625-9160004, rev a

Buffalo, NY 14221

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

Office of Naval Research

ONR 251 WDW, Ballston Tower One
800 No. Quincy Street

Arlington, VA 22217-5660

11. Supplemental Notes

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12a. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Active perception strategies are necessary for goal-driven allocation of available resources to improve relevant

information acquisition and optimize overall system performance. In addition to being both goal and data
driven, these strategies must also account for the fact that information acquisition is inherently a partially
observable Markov decision problem. This report describes an efficient, scalable reinforcement learning
approach to the control of autonomous active vision that also satisfies the more stringent requirements of
foveal machine vision. Foveal vision offers images with both wide field of view, useful for rapid detection,
and a high acuity zone, useful for accurate recognition, without the overhead and errors inherent in dynamic
registration of data from multiple sensors. However, space-variant data acquisition inherent with foveal
retinotopologies necessitates deployment of refined intelligent gaze control techniques. This report first lays a
theoretical foundation for reinforcement learning. It then introduces the SARSA algorithm in conjunction
with history augmentation as an effective learning control method for visual attention. The system is shown to
perform well in both high and low SNR ATR environments. Reinforcement learning coupled with history
features appears to be both a sound foundation and a practical scalable base for gaze control.

t4. SUBJECT TERMS 15. NUMBER OF PAGES
Reinforcement Learning, Robotics, Active Vision, Hierarchical
Processing, Foveal Vision, Multiresolution 60

16. PRICE CODE

17. SECURITY CLASSIFICATION 18, SECURITY CLASSIFICATION 19. SECURITY 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE CLASSIFICATION
Unclassified Unclassified OF ABSTRACT Unlimited
Unclassified

